基因沉默
细胞生物学
基因敲除
自噬
生物
MAPK/ERK通路
炎症
PI3K/AKT/mTOR通路
细胞
基因表达
化学
信号转导
基因
生物化学
细胞凋亡
免疫学
作者
Sumin Lee,Duc‐Vinh Pham,Pil‐Hoon Park
标识
DOI:10.1007/s12272-021-01364-0
摘要
Adiponectin, an adipose tissue-derived hormone, exhibits a modulatory effect on cell death/survival and possesses potent anti-inflammatory properties. However, the underlying molecular mechanisms remain elusive. Sestrin2, a stress-inducible metabolic protein, has shown cytoprotective and inflammation-modulatory effects under stressful conditions. In this study, we examined the role of sestrin2 signaling in the modulation of cell survival and inflammatory responses by globular adiponectin (gAcrp) in macrophages. We observed that gAcrp induced a significant increase in sestrin2 expression in both RAW 264.7 murine macrophages and primary murine macrophages. Notably, gAcrp treatment markedly increased expression of hypoxia inducible factor-1 α (HIF-1α) and gene silencing of HIF-1α blocked sestrin2 induction by gAcrp. In addition, pretreatment with a pharmacological inhibitor of ERK or PI3K abrogated both sestrin2 and HIF-1α expression by gAcrp, indicating that ERK/PI3K-mediated HIF-1α signaling pathway plays a critical role in sestrin2 induction by gAcrp. Furthermore, sestrin2 induction is implicated in autophagy activation, and knockdown of sestrin2 prevented enhanced cell viability by gAcrp. Moreover, gene silencing of sestrin2 caused restoration of gAcrp-induced expression of anti-inflammatory genes in a gene-selective manner. Taken together, these results indicate that sestrin2 induction critically contributes to cell survival and anti-inflammatory responses by gAcrp in macrophages.
科研通智能强力驱动
Strongly Powered by AbleSci AI