体内
药代动力学
药理学
药品
基于生理学的药代动力学模型
药物输送
双胍
盐酸二甲双胍
吸收(声学)
溶解试验
计算机科学
二甲双胍
化学
医学
材料科学
内科学
生物
胰岛素
生物技术
有机化学
复合材料
生物制药分类系统
作者
Rajesh Singh Pawar,Swati Jagdale
出处
期刊:Journal of pharmaceutical research international
[Sciencedomain International]
日期:2021-08-05
卷期号:: 143-155
标识
DOI:10.9734/jpri/2021/v33i40a32231
摘要
Aim: This research work was aimed to evaluate Metformin hydrochloride (MH) floating dosage form by In vitro evaluation/In vivo prediction and to evaluate it’s predictability through it’s application during the R&D using Insilico technique in WINONLIN Software. MH was examined as a model drug, which is a biguanide and is an hypoglycemic agent administered orally. The study was aimed to determine the the systemic concentrations of MH using In-vivo prediction.
Study Design: Fabrication and assessment of Metformin hydrochloride floating drug delivery system: In Vitro evaluation /In Vivo prediction. Biorelevant media was selected for dissolution profile of 12 units of dosage form. Software assisted program used for data feeding and results output.
Methodology: The absorption window for MH is the upper portion of the small gut in which the GI absorption is complete after 6 h. Hence gastroretentive formulation was developed and validity of dissolution study was extended by In vivo pharmacokinetic prediction using WinNonlin Software. A mechanistic oral absorption model was built in Phoenix WinNonlin® software.
In the presented work, significant yet crucial, gastrointestinal (GI) variables are considered for biopredictive dissolution testing to account for a valuable input for physiologically-based pharmacokinetic (PBPK) platform programs. While simulations are performed and mechanistic insights are gained from such simulations from the WinNonlin program.
Results: These floating tablets were observed for In vitro release and studied for In vivo pharmacokinetic prediction. From the obtained values, a meaningful In vivo prediction was done. interestingly from the results attained floating tablets showed sustained drug release and extended drug absorbed in 24h. Fascinatingly, from the data it was proved that drug formulation resides for desired time. The absorption of MH from the developed CR tablet was 1.4 fold higher than its marketed tablet and it had higher AUC0–t values than the marketed product which indicates superior bioavailability of test product compared to marketed tablet with similar dose in Invivo pharmacokinetic prediction. The mean value of biological half-life (t1/2) and Tmax of MH from test formulation is two times more, Test product has shown higher MRT, showing that the drug is maintained longer in the body in comparison to marketed product indicates controlled absorption.
Conclusion: Here we concluded that, a comparative prediction pharmacokinetic evaluation of the fabricated controlled release tablets and the marketed formulation indicates that the fabricated controlled release tablets are well absorbed and the degree of absorption is greater than that of the marketed ER formulation with larger gastric residence time.
科研通智能强力驱动
Strongly Powered by AbleSci AI