Interpretable learning based Dynamic Graph Convolutional Networks for Alzheimer’s Disease analysis

可解释性 计算机科学 图形 分类器(UML) 人工智能 机器学习 图嵌入 嵌入 数据挖掘 模式识别(心理学) 理论计算机科学
作者
Yonghua Zhu,Junbo Ma,Changan Yuan,Xiaofeng Zhu
出处
期刊:Information Fusion [Elsevier]
卷期号:77: 53-61 被引量:128
标识
DOI:10.1016/j.inffus.2021.07.013
摘要

Graph Convolutional Networks (GCNs) are widely applied in classification tasks by aggregating the neighborhood information of each sample to output robust node embedding. However, conventional GCN methods do not update the graph during the training process so that their effectiveness is always influenced by the quality of the input graph. Moreover, previous GCN methods lack the interpretability to limit their real applications. In this paper, a novel personalized diagnosis technique is proposed for early Alzheimer’s Disease (AD) diagnosis via coupling interpretable feature learning with dynamic graph learning into the GCN architecture. Specifically, the module of interpretable feature learning selects informative features to provide interpretability for disease diagnosis and abandons redundant features to capture inherent correlation of data points. The module of dynamic graph learning adjusts the neighborhood relationship of every data point to output robust node embedding as well as the correlations of all data points to refine the classifier. The GCN module outputs diagnosis results based on the learned inherent graph structure. All three modules are jointly optimized to perform reliable disease diagnosis at an individual level. Experiments demonstrate that our method outputs competitive diagnosis performance as well as provide interpretability for personalized disease diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
糊涂涂完成签到,获得积分10
1秒前
花花发布了新的文献求助10
2秒前
刘仪雪应助糟糕的霆采纳,获得10
2秒前
3秒前
3秒前
善学以致用应助Lin采纳,获得10
4秒前
mhr发布了新的文献求助30
4秒前
杀出个黎明举报Daxiong626求助涉嫌违规
5秒前
dong发布了新的文献求助10
5秒前
6秒前
6秒前
zxj完成签到,获得积分10
6秒前
7秒前
7秒前
VitaminK发布了新的文献求助10
8秒前
8秒前
畅快山兰发布了新的文献求助10
10秒前
10秒前
xff完成签到,获得积分10
11秒前
shoooot发布了新的文献求助20
11秒前
田様应助花花采纳,获得10
11秒前
万能图书馆应助英勇青亦采纳,获得10
12秒前
JamesPei应助眼睛大的惜萱采纳,获得10
12秒前
12秒前
12秒前
Daxiong626关注了科研通微信公众号
13秒前
luym发布了新的文献求助10
14秒前
15秒前
Saven发布了新的文献求助10
16秒前
16秒前
17秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470747
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9085172
捐赠科研通 2754236
什么是DOI,文献DOI怎么找? 1511336
邀请新用户注册赠送积分活动 698372
科研通“疑难数据库(出版商)”最低求助积分说明 698253