材料科学
低聚物
水解
聚合物
盐(化学)
纤维素
化学工程
水合物
吸附
葡聚糖
有机化学
高分子化学
复合材料
化学
工程类
作者
Qiyu Liu,Liang Zhou,Di Fan,Mingzhao Guan,Qiaozhi Ma,Song Li,Xinping Ouyang,Xueqing Qiu,Wei Fan
标识
DOI:10.1021/acsami.1c09360
摘要
Selective saccharification of cellulose into glucose is a critical step for utilization of lignocellulosic biomass. Molten salt hydrates (MSHs) have shown promising performance in selectively converting cellulose into glucose because of the high solubility of cellulose in the solvent. However, the separation of formed glucose from the MSHs is still a grand challenge. To address this issue, we developed a two-step process, where crystalline cellulose is hydrolyzed into short-chain glucan oligomers in MSHs followed by separation and subsequent hydrolysis of the formed oligomers into glucose under mild conditions. The two-step method provides an easy separation for glucan oligomers from the MSHs without sacrificing the selectivity to glucose. Application of the method for crystalline cellulose is, however, limited to a relatively low concentration, 26.2 mg/mL, because of the formation of byproducts in the MSH that facilitate oligomers degradation. In this work, reactive adsorption was employed to in situ remove the byproducts formed during cellulose hydrolysis in the MSH. It was found that hyper-cross-linked polymer (HCP) made from the polymerization of 4-vinylbenzyl chloride and divinylbenzene can selectively adsorb 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) while showing negligible sugar adsorption in both water and the MSH. With the reactive adsorption approach, byproducts including 5-HMF and LA were removed from the reaction media under reaction conditions, and their negative effects on oligomer degradation were inhibited. In the presence of the HCP, the obtained glucan oligomer concentration was enhanced from less than 54.2 to 247.1 mg mL–1 when the weight ratio of cellulose was increased to MSH from 1:60 to 1:4, exhibiting an oligomer yield of 69.5%. The HCP can be effectively separated from the reaction media by filtration and regenerated by oxidation with hydrogen peroxide. Application of reactive adsorption with HCP for cellulose hydrolysis in the MSH provides a promising method to produce glucan oligomers and glucose with an improved yield and efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI