亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnostic accuracy of the short-form Fonseca Anamnestic Index in relation to the Diagnostic Criteria for Temporomandibular Disorders

医学 接收机工作特性 诊断准确性 切断 医学诊断 颞下颌关节紊乱病 研究诊断标准 疼痛 临床实习 曲线下面积 尤登J统计 内科学 物理疗法 颞下颌关节 口腔正畸科 病理 慢性疼痛 物理 量子力学
作者
Adrian Ujin Yap,Min‐Juan Zhang,Jie Lei,Kai‐Yuan Fu
出处
期刊:Journal of Prosthetic Dentistry [Elsevier]
卷期号:128 (5): 977-983 被引量:20
标识
DOI:10.1016/j.prosdent.2021.02.016
摘要

Screening for temporomandibular disorders (TMDs) is important in research and clinical practice. The short-form Fonseca Anamnestic Index (SFAI) was recently introduced but had only been validated for muscle disorders.The purpose of this clinical study was to determine the diagnostic accuracy of the SFAI and its discrete and pooled items in relation to the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) benchmark.A total of 866 consecutive participants with TMDs and 57 TMD-free controls (aged ≥18 years) were recruited. The participants (n=923; mean age 32.8 ±13.3 years; women 79.2%) answered the FAI, and TMD diagnoses were derived based on the DC/TMD protocol and algorithms. The 5-item SFAI, which comprised 2 pain-related and 3 function-related TMD questions, was subsequently acquired and assessed with reference to the DC/TMD diagnoses. The receiver operating characteristics (ROC) was used to verify accuracy (area under the curve [AUC]) and the best cutoff points. Sensitivity, specificity, predictive values, and likelihood ratios were also examined.Pain-related (PT) and intra-articular (IT) TMDs were present in 48.3% (446/923) and 82.7% (763/923) of the participants, respectively. The SFAI demonstrated high accuracy for identifying all TMDs, PT, and IT (AUC of 0.97, 0.99, and 0.97, respectively). The best cutoff points were 12.5 for all TMDs/IT and 17.5 for PT. Sensitivity of the SFAI ranged from 90.7% to 97.5% while specificity varied from 93.0% to 96.5%, with the highest values for PT. As positive predictive values (99.4% to 99.5%) were greater than negative ones (41.7% to 83.3%), the SFAI was better at detecting the presence than the absence of TMDs. With reference to PT, the sensitivity, and specificity of the 2 discrete and pooled pain-related questions (questions 3 and 4), extended from 82.3% to 99.3% and 77.2% to 96.5% respectively. With regard to IT diagnoses, sensitivity and specificity ranged from 56.0% to 98.3% and 86.0% to 98.3% for the 3 discrete and pooled function-related items (questions 1, 2, and 5).The SFAI presented high degrees of diagnostic accuracy in relation to the DC/TMD and can be used for screening TMDs. SFAI scores between 15 and 50 points should be used to identify the presence of TMDs, with scores ≥20 points specifying possible pain-related TMDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
1分钟前
林鹏达发布了新的文献求助10
1分钟前
Zn应助冬天好大的雨采纳,获得10
1分钟前
Leon应助科研通管家采纳,获得20
2分钟前
2分钟前
3分钟前
留白发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
慕青应助科研通管家采纳,获得10
4分钟前
4分钟前
森予发布了新的文献求助10
4分钟前
默默的阑悦完成签到,获得积分10
5分钟前
下一块蛋糕完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
科研通AI5应助默默的阑悦采纳,获得10
6分钟前
ASZXDW发布了新的文献求助10
7分钟前
7分钟前
Himejima完成签到,获得积分0
7分钟前
玛琳卡迪马完成签到,获得积分10
7分钟前
科研通AI5应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
wendy发布了新的文献求助10
8分钟前
8分钟前
布布发布了新的文献求助30
8分钟前
ding应助wendy采纳,获得10
8分钟前
盐植物应助张清采纳,获得10
8分钟前
布布完成签到,获得积分10
9分钟前
华仔应助布布采纳,获得10
9分钟前
Leon应助科研通管家采纳,获得20
10分钟前
Leon应助科研通管家采纳,获得20
10分钟前
Leon应助科研通管家采纳,获得20
10分钟前
10分钟前
10分钟前
彭于晏应助计时器响了采纳,获得30
10分钟前
江文完成签到,获得积分20
11分钟前
11分钟前
江文发布了新的文献求助30
11分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544455
求助须知:如何正确求助?哪些是违规求助? 3121630
关于积分的说明 9348120
捐赠科研通 2819909
什么是DOI,文献DOI怎么找? 1550514
邀请新用户注册赠送积分活动 722559
科研通“疑难数据库(出版商)”最低求助积分说明 713273