Fast discrimination of tumor and blood cells by label-free surface-enhanced Raman scattering spectra and deep learning

拉曼散射 循环肿瘤细胞 拉曼光谱 人工智能 特征(语言学) 肿瘤细胞 k-最近邻算法 主成分分析 预处理器 材料科学 散射 谱线 化学 计算机科学 分析化学(期刊) 光学 物理 癌症研究 生物 内科学 医学 色谱法 癌症 哲学 语言学 转移 天文
作者
Xianglin Fang,Qiuyao Zeng,Xinliang Yan,Zuyi Zhao,Na Chen,QianRu Deng,Menghan Zhu,Yanjiao Zhang,Shaoxin Li
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:129 (12) 被引量:25
标识
DOI:10.1063/5.0042662
摘要

Rapidly and accurately identifying tumor cells and blood cells is an important part of circulating tumor cell detection. Raman spectroscopy is a molecular vibrational spectroscopy technique that can provide fingerprint information about molecular vibrational and rotational energy levels. Deep learning is an advanced machine learning method that can be used to classify various data accurately. In this paper, the surface-enhanced Raman scattering spectra of blood cells and various tumor cells are measured with the silver film substrate. It is found that there are significant differences in nucleic acid-related characteristic peaks between most tumor cells and blood cells. These spectra are classified by the feature peak ratio method, principal component analysis combined with K-nearest neighbor, and residual network, which is a kind of deep learning algorithm. The results show that the ratio method and principal component analysis combined with the K-nearest neighbor method could only distinguish some tumor cells from blood cells. The residual network can quickly identify various tumor cells and blood cells with an accuracy of 100%, and there is no complex preprocessing for the surface-enhanced Raman scattering spectra. This study shows that the silver film surface-enhanced Raman scattering technology combined with deep learning algorithms can quickly and accurately identify blood cells and tumor cells, indicating an important reference value for the label-free detecting circulating tumor cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yar应助JJ采纳,获得10
刚刚
爆米花应助钮幻竹采纳,获得10
1秒前
万能图书馆应助放肆青春采纳,获得10
1秒前
小二郎应助HesperLxy采纳,获得10
1秒前
LUAN完成签到,获得积分10
2秒前
3秒前
所所应助寒月如雪采纳,获得10
3秒前
3秒前
Swan完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
小屁孩应助SunGuoping采纳,获得10
5秒前
6秒前
6秒前
6秒前
领导范儿应助路之遥兮采纳,获得10
7秒前
7秒前
zjspidany发布了新的文献求助30
9秒前
庞伟泽发布了新的文献求助10
9秒前
9秒前
9秒前
666完成签到,获得积分10
9秒前
甜田发布了新的文献求助10
11秒前
小二郎应助橙汁采纳,获得10
11秒前
英俊的铭应助小文殊采纳,获得10
11秒前
小白发布了新的文献求助10
11秒前
12秒前
瑾玉发布了新的文献求助10
12秒前
12秒前
13秒前
领导范儿应助guoxihan采纳,获得10
13秒前
maox1aoxin应助可乐采纳,获得30
13秒前
14秒前
张楠完成签到 ,获得积分10
15秒前
包容水桃发布了新的文献求助10
16秒前
16秒前
放肆青春发布了新的文献求助10
17秒前
钮幻竹发布了新的文献求助10
18秒前
鬼笔环肽完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293903
求助须知:如何正确求助?哪些是违规求助? 2929888
关于积分的说明 8443692
捐赠科研通 2602038
什么是DOI,文献DOI怎么找? 1420299
科研通“疑难数据库(出版商)”最低求助积分说明 660523
邀请新用户注册赠送积分活动 643192