Fast discrimination of tumor and blood cells by label-free surface-enhanced Raman scattering spectra and deep learning

拉曼散射 循环肿瘤细胞 拉曼光谱 人工智能 特征(语言学) 肿瘤细胞 k-最近邻算法 主成分分析 预处理器 材料科学 散射 谱线 化学 计算机科学 分析化学(期刊) 光学 物理 癌症研究 生物 内科学 医学 色谱法 癌症 哲学 语言学 转移 天文
作者
Xianglin Fang,Qiuyao Zeng,Xin-Liang Yan,Zuyi Zhao,Na Chen,QianRu Deng,Menghan Zhu,Yanjiao Zhang,Shaoxin Li
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:129 (12) 被引量:26
标识
DOI:10.1063/5.0042662
摘要

Rapidly and accurately identifying tumor cells and blood cells is an important part of circulating tumor cell detection. Raman spectroscopy is a molecular vibrational spectroscopy technique that can provide fingerprint information about molecular vibrational and rotational energy levels. Deep learning is an advanced machine learning method that can be used to classify various data accurately. In this paper, the surface-enhanced Raman scattering spectra of blood cells and various tumor cells are measured with the silver film substrate. It is found that there are significant differences in nucleic acid-related characteristic peaks between most tumor cells and blood cells. These spectra are classified by the feature peak ratio method, principal component analysis combined with K-nearest neighbor, and residual network, which is a kind of deep learning algorithm. The results show that the ratio method and principal component analysis combined with the K-nearest neighbor method could only distinguish some tumor cells from blood cells. The residual network can quickly identify various tumor cells and blood cells with an accuracy of 100%, and there is no complex preprocessing for the surface-enhanced Raman scattering spectra. This study shows that the silver film surface-enhanced Raman scattering technology combined with deep learning algorithms can quickly and accurately identify blood cells and tumor cells, indicating an important reference value for the label-free detecting circulating tumor cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朝阳区李知恩应助sxiao采纳,获得30
1秒前
karmenda发布了新的文献求助10
3秒前
雨洋发布了新的文献求助20
3秒前
4秒前
5秒前
orixero应助shirley采纳,获得10
5秒前
俊逸如风完成签到 ,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助150
7秒前
9秒前
10秒前
如沐春风发布了新的文献求助10
10秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Tourist应助科研通管家采纳,获得150
13秒前
Koalas应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
核桃应助科研通管家采纳,获得10
13秒前
浮游应助lq采纳,获得10
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
Koalas应助科研通管家采纳,获得10
14秒前
核桃应助科研通管家采纳,获得50
14秒前
14秒前
Koalas应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
安烁完成签到 ,获得积分10
14秒前
贵为我国的大姐完成签到,获得积分10
15秒前
zz发布了新的文献求助10
15秒前
一鹿阳光发布了新的文献求助30
17秒前
17秒前
19秒前
李爱国应助激情的随阴采纳,获得10
20秒前
21秒前
aimer发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073256
求助须知:如何正确求助?哪些是违规求助? 4293380
关于积分的说明 13378282
捐赠科研通 4114827
什么是DOI,文献DOI怎么找? 2253172
邀请新用户注册赠送积分活动 1257983
关于科研通互助平台的介绍 1190836