Making costly manufacturing smart with transfer learning under limited data: A case study on composites autoclave processing

遗忘 工厂(面向对象编程) 学习迁移 制造业 计算机科学 工业工程 生产(经济) 智能制造 一般化 过程(计算) 制造工程 数据建模 机器学习 工艺工程 人工智能 工程类 数据库 政治学 法学 程序设计语言 数学 经济 语言学 宏观经济学 哲学 数学分析 操作系统
作者
Milad Ramezankhani,Bryn Crawford,Apurva Narayan,Heinz Voggenreiter,Rudolf Seethaler,Abbas S. Milani
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:59: 345-354 被引量:37
标识
DOI:10.1016/j.jmsy.2021.02.015
摘要

The integration of advanced manufacturing processes with ground-breaking Artificial Intelligence methods continue to provide unprecedented opportunities towards modern cyber-physical manufacturing processes, known as smart manufacturing or Industry 4.0. However, the “smartness” level of such approaches closely depends on the degree to which the implemented predictive models can handle uncertainties and production data shifts in the factory over time. In the case of change in a manufacturing process configuration with no sufficient new data, conventional Machine Learning (ML) models often tend to perform poorly. In this article, a transfer learning (TL) framework is proposed to tackle the aforementioned issue in modeling smart manufacturing. Namely, the proposed TL framework is able to adapt to probable shifts in the production process design and deliver accurate predictions without the need to re-train the model. Armed with sequential unfreezing and early stopping methods, the model demonstrated the ability to avoid catastrophic forgetting in the presence of severely limited data. Through the exemplified industry-focused case study on autoclave composite processing, the model yielded a drastic (88%) improvement in the generalization accuracy compared to the conventional learning, while reducing the computational and temporal cost by 56%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Leeu发布了新的文献求助30
1秒前
黎明发布了新的文献求助10
1秒前
GGbond发布了新的文献求助10
1秒前
gjm发布了新的文献求助10
1秒前
爆米花应助灵巧一笑采纳,获得10
1秒前
wanci应助科研通管家采纳,获得30
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
猪猪hero发布了新的文献求助10
2秒前
万能图书馆应助虾米采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
Friday完成签到,获得积分20
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
916应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
田田发布了新的文献求助10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
916应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得30
3秒前
3秒前
SYLH应助科研通管家采纳,获得20
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
916应助科研通管家采纳,获得10
3秒前
916应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
5秒前
聪明夏天完成签到,获得积分10
5秒前
mmb完成签到,获得积分10
5秒前
呆萌的萝完成签到,获得积分10
6秒前
拉长的战斗机完成签到,获得积分10
7秒前
尊敬的凝丹完成签到 ,获得积分10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650