[Advances in on-line enzyme assays by sequence analysis-based capillary electrophoresis].

化学 毛细管电泳 色谱法 序列(生物学) 电泳 计算生物学 生物化学 生物
标识
DOI:10.3724/sp.j.1123.2020.05008
摘要

Due to unique advantages such as short analysis time, high separation efficiency and sensitivity, easy automation, extremely low sample and reagent volume requirements, and the ability to utilize several detection methods, capillary electrophoresis (CE) is used as a high-efficiency separation technique, and has been developed as a powerful tool for on-line enzyme assays. On-line enzyme assays based on CE have been applied to almost all aspects of enzyme assays over the past two decades, including the evaluation of enzyme activities and kinetics, identification and characterization of enzyme inhibitors and activators, detection of enzyme substrates, investigation of enzyme-mediated metabolic pathways, and proteome analysis. One potential use of enzyme assays is in tracing enzymatic reactions from beginning to the end at high temporal resolution. Measurements of enzyme reactions at high temporal resolution can result in more accurate estimates of reaction mechanisms and reaction rate constants, which is vitally important for improving understanding of the functions of enzymes in metabolism and for identifying the potential use of enzymes in clinical diagnostics. Furthermore, high-throughput online enzyme analysis is of great importance for the analysis of enzyme reactions and enzyme inhibition reactions. The development of accurate, rapid and high-throughput enzyme inhibition screening methods is especially important for accelerating the development of new drugs. Electrophoretically mediated microanalysis (EMMA) and CE-integrated immobilized enzyme microreactor (IMER) are the two most used techniques for online CE enzyme assays. The EMMA technique utilizes different electrophoretic mobilities of enzymes and substrates to initiate reactions within the capillary and to separate the components of the reaction mixture for the final in-capillary quantification. In a CE-integrated IMER, the enzyme is bound to the capillary surface or to a suitable carrier attached to the capillary through physical adsorption, cross-linking, covalent bonding or other methods. The enzyme reactor is usually located at one end of the capillary; the enzyme-catalyzed reaction occurs when the substrates pass through the enzyme reactor and the substrates/products of the enzymatic reaction are separated and online detected by CE at the downstream end of the capillary. In both either techniques, the samples are usually introduced into the capillary by electrokinetic injection or by hydrodynamic injection. Because both injection methods require that the capillary inlet be physically moved from the sample container to the running buffer for CE analysis after each sample injection, it is unlikely that EMMA or microreactor techniques can be successfully used to perform sequential online analysis. Therefore, a CE sequence analysis technique based on rapid sequential injection has been developed as another powerful method for online enzyme analysis. Compared with the widely used electrokinetic and hydrodynamic injection methods used in traditional CE online enzyme analysis methods, rapid sequence injection methods can achieve sequential injection without any physical disturbance of the capillary inlet, allowing for the successful performance of online enzyme assays with high temporal resolution and at high throughput. A rapid, sequential, and automatic sample introduction system is an important part of online enzyme analysis based on CE sequence analysis. Several sequential injection methods such as optical-gating injection, flow-gated injection, two-dimension diffusion injection, flow injection and droplet microfluidics combined with CE have been developed to successfully perform online enzyme assays with high temporal resolution and high throughput. In this paper, we will review recently developed CE online enzyme assays and inhibition studies based on rapid sequential injection. We review the progress and applications of various sequential sample injection approaches that have been developed for sequential on-line CE analysis of enzyme reactions at high temporal resolution and high-throughput screening of enzyme inhibitors, including optical-gating injection, flow gated injection, two-dimension diffusion injection, flow injection and droplet microfluidics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
long0809完成签到,获得积分10
1秒前
bkagyin应助Unpaid采纳,获得10
2秒前
2秒前
奋斗的绝悟完成签到,获得积分10
3秒前
情怀应助Painkiller_采纳,获得10
4秒前
元骏发布了新的文献求助10
4秒前
元骏发布了新的文献求助10
4秒前
元骏发布了新的文献求助10
4秒前
元骏发布了新的文献求助10
4秒前
元骏发布了新的文献求助10
4秒前
元骏发布了新的文献求助10
4秒前
元骏发布了新的文献求助10
4秒前
元骏发布了新的文献求助10
4秒前
元骏发布了新的文献求助10
4秒前
元骏发布了新的文献求助10
4秒前
元骏发布了新的文献求助10
4秒前
哒丝萌德完成签到,获得积分10
4秒前
哲欣完成签到,获得积分10
9秒前
无花果应助123456采纳,获得10
10秒前
11秒前
淡定猎豹完成签到,获得积分20
11秒前
12秒前
changping应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
lalala应助科研通管家采纳,获得10
13秒前
lasalu应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得100
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
14秒前
lalala应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400