下调和上调
脂肪性肝炎
CD36
骨髓
脂肪肝
间充质干细胞
MFN2型
癌症研究
医学
内分泌学
内科学
生物
病理
生物化学
线粒体融合
受体
疾病
基因
线粒体DNA
作者
Marwa O. El-Derany,Sherihan G. AbdelHamid
标识
DOI:10.1016/j.bcp.2021.114624
摘要
Non-alcoholic steatohepatitis (NASH) has evolved as the most common and devastating chronic liver disease. This study aimed to explore the underlined mechanism for the therapeutic potentials of bone marrow mesenchymal stem cells (BM-MSCs) and their derived exosomes (BM-MSCs-Exo) in an experimental model of high fat diet (HFD) induced NASH. Rats were fed with HFD for 12 weeks. At the seventh week, BM-MSCs were given at a dose of 1x106 cell i.v., per rat. A total of three doses of BM-MSCs were given per each rat in six weeks. BM-MSCs-Exo were given at a dose of 15, 30 and 120 µg/kg i.v., twice per week for six weeks. Perfect homing to the liver was detected. Beneficial effects were reported to BM-MSCs or BM-MSCs-Exo cotreatment; where the highest anti-steatotic effects were attributed to BM-MSCs-Exo (120 µg/kg) showing significant downregulation of fatty acid synthesis (SREB1, 2, ACC), downregulation in lipid uptake (CD36); accompanied by significant upregulation in fatty acid oxidation (PPARα, CPT1). These events were associated with abrogation of hepatic steatosis and ballooning in HFD-induced NASH. BM-MSCs or BM-MSCs-Exo cotreatment exerted significant anti-apoptotic effects mediated by significant decrease in Bax/Bcl2 ratio. Besides, significant increase in mitochondrial mitophagy genes (Parkin, PINK1, ULK1, BNIP3L, ATG5, ATG7, ATG12) were detected in BM-MSCs or BM-MSCs-Exo cotreated groups. These findings are thought to be modulated through upregulation of miRNA-96-5p which leads to downregulation of its downstream target caspase-2. Being a critical player in NASH development, caspase-2 targeting by miRNA-96-5p could be a promising therapeutic modality to treat NASH.
科研通智能强力驱动
Strongly Powered by AbleSci AI