Deep Learning Based Vulnerability Detection: Are We There Yet?

计算机科学 假阳性悖论 机器学习 惊喜 人工智能 脆弱性(计算) 软件 深度学习 数据挖掘 计算机安全 心理学 社会心理学 程序设计语言
作者
Saikat Chakraborty,Rahul Krishna,Yangruibo Ding,Baishakhi Ray
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:48 (9): 3280-3296 被引量:111
标识
DOI:10.1109/tse.2021.3087402
摘要

Automated detection of software vulnerabilities is a fundamental problem in software security. Existing program analysis techniques either suffer from high false positives or false negatives. Recent progress in Deep Learning (DL) has resulted in a surge of interest in applying DL for automated vulnerability detection. Several recent studies have demonstrated promising results achieving an accuracy of up to 95 percent at detecting vulnerabilities. In this paper, we ask, “how well do the state-of-the-art DL-based techniques perform in a real-world vulnerability prediction scenario?” To our surprise, we find that their performance drops by more than 50 percent. A systematic investigation of what causes such precipitous performance drop reveals that existing DL-based vulnerability prediction approaches suffer from challenges with the training data (e.g., data duplication, unrealistic distribution of vulnerable classes, etc.) and with the model choices (e.g., simple token-based models). As a result, these approaches often do not learn features related to the actual cause of the vulnerabilities. Instead, they learn unrelated artifacts from the dataset (e.g., specific variable/function names, etc.). Leveraging these empirical findings, we demonstrate how a more principled approach to data collection and model design, based on realistic settings of vulnerability prediction, can lead to better solutions. The resulting tools perform significantly better than the studied baseline—up to 33.57 percent boost in precision and 128.38 percent boost in recall compared to the best performing model in the literature. Overall, this paper elucidates existing DL-based vulnerability prediction systems’ potential issues and draws a roadmap for future DL-based vulnerability prediction research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
顺心的含羞草完成签到,获得积分20
4秒前
乐乐乐乐乐乐应助wang5945采纳,获得10
5秒前
6秒前
oo发布了新的文献求助10
6秒前
清脆沧海发布了新的文献求助10
6秒前
会飞的鱼发布了新的文献求助10
8秒前
坚若磐石完成签到,获得积分10
9秒前
9秒前
camellia发布了新的文献求助10
10秒前
ToTmmm完成签到,获得积分10
10秒前
12秒前
rita发布了新的文献求助10
14秒前
无语发布了新的文献求助10
14秒前
2877321934完成签到,获得积分10
15秒前
15秒前
17秒前
NexusExplorer应助giggity10086采纳,获得10
17秒前
gghh完成签到 ,获得积分10
19秒前
20秒前
20秒前
xiaoguan完成签到,获得积分10
21秒前
淡定鸿涛发布了新的文献求助10
21秒前
somous发布了新的文献求助10
21秒前
弯弯关注了科研通微信公众号
22秒前
22秒前
22秒前
旱田蜗牛发布了新的文献求助10
23秒前
rita完成签到,获得积分10
26秒前
会飞的鱼发布了新的文献求助10
27秒前
李健应助qiaocolate采纳,获得10
27秒前
FashionBoy应助敏感的穆采纳,获得10
27秒前
wbr发布了新的文献求助30
27秒前
dominate发布了新的文献求助10
27秒前
我服有点黑完成签到,获得积分10
29秒前
淡定鸿涛完成签到,获得积分10
30秒前
31秒前
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3290541
求助须知:如何正确求助?哪些是违规求助? 2927152
关于积分的说明 8431297
捐赠科研通 2598586
什么是DOI,文献DOI怎么找? 1417954
科研通“疑难数据库(出版商)”最低求助积分说明 659975
邀请新用户注册赠送积分活动 642536