Pancreatic Ductal Adenocarcinoma at CT: A Combined Nomogram Model to Preoperatively Predict Cancer Stage and Survival Outcome

列线图 医学 接收机工作特性 阶段(地层学) 胰腺导管腺癌 无线电技术 逻辑回归 队列 曲线下面积 肿瘤科 内科学 生存分析 放射科 胰腺癌 T级 癌症 生物 古生物学
作者
Chunyuan Cen,Liying Liu,Xin Li,Ailan Wu,Huan Liu,Xinrong Wang,Heshui Wu,Chunyou Wang,Ping Han,Siqi Wang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:13
标识
DOI:10.3389/fonc.2021.594510
摘要

To construct a nomogram model that combines clinical characteristics and radiomics signatures to preoperatively discriminate pancreatic ductal adenocarcinoma (PDAC) in stage I-II and III-IV and predict overall survival.A total of 135 patients with histopathologically confirmed PDAC who underwent contrast-enhanced CT were included. A total of 384 radiomics features were extracted from arterial phase (AP) or portal venous phase (PVP) images. Four steps were used for feature selection, and multivariable logistic regression analysis were used to build radiomics signatures and combined nomogram model. Performance of the proposed model was assessed by using receiver operating characteristic (ROC) curves, calibration curves and decision curve analysis (DCA). Kaplan-Meier analysis was applied to analyze overall survival in the stage I-II and III-IV PDAC groups.The AP+PVP radiomics signature showed the best performance among the three radiomics signatures [training cohort: area under the curve (AUC) = 0.919; validation cohort: AUC = 0.831]. The combined nomogram model integrating AP+PVP radiomics signature with clinical characteristics (tumor location, carcinoembryonic antigen level, and tumor maximum diameter) demonstrated the best discrimination performance (training cohort: AUC = 0.940; validation cohort: AUC = 0.912). Calibration curves and DCA verified the clinical usefulness of the combined nomogram model. Kaplan-Meier analysis showed that overall survival of patients in the predicted stage I-II PDAC group was longer than patients in stage III-IV PDAC group (p<0.0001).We propose a combined model with excellent performance for the preoperative, individualized, noninvasive discrimination of stage I-II and III-IV PDAC and prediction of overall survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mwj发布了新的文献求助10
刚刚
Leon举报闪闪的巧蕊求助涉嫌违规
刚刚
高万完成签到,获得积分10
刚刚
李健应助猫滩儿采纳,获得10
1秒前
polaris发布了新的文献求助10
1秒前
2秒前
2秒前
所所应助Gu采纳,获得50
3秒前
4秒前
4秒前
5秒前
5秒前
852应助是兜兜吖采纳,获得10
5秒前
entity完成签到,获得积分10
6秒前
7秒前
7秒前
xu完成签到,获得积分10
8秒前
LYT发布了新的文献求助10
8秒前
彭于晏应助顺心的谷冬采纳,获得10
8秒前
hzzz发布了新的文献求助10
9秒前
李健的小迷弟应助Echo1采纳,获得10
9秒前
今后应助勤劳春天采纳,获得10
9秒前
9秒前
善学以致用应助策略采纳,获得10
10秒前
11秒前
11秒前
zho发布了新的文献求助30
11秒前
Lucas应助单纯的爆米花采纳,获得10
11秒前
英姑应助xu采纳,获得10
12秒前
英姑应助小胡好好学习采纳,获得10
12秒前
13秒前
lll完成签到 ,获得积分10
13秒前
聪慧的月饼完成签到,获得积分10
13秒前
h_hellow发布了新的文献求助20
13秒前
lovesf完成签到,获得积分10
14秒前
LYT完成签到,获得积分20
14秒前
tianzhanggong发布了新的文献求助50
16秒前
zoey发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561145
求助须知:如何正确求助?哪些是违规求助? 3134912
关于积分的说明 9410275
捐赠科研通 2835309
什么是DOI,文献DOI怎么找? 1558420
邀请新用户注册赠送积分活动 728160
科研通“疑难数据库(出版商)”最低求助积分说明 716722