清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multimodal Emotion Recognition with Capsule Graph Convolutional Based Representation Fusion

计算机科学 模式识别(心理学) 人工智能 情绪识别 融合 卷积神经网络 代表(政治) 自然语言处理 语音识别 图形 计算机视觉 理论计算机科学 语言学 哲学 政治 政治学 法学
作者
Jiaxing Liu,Sen Chen,Longbiao Wang,Zhilei Liu,Yahui Fu,Lili Guo,Jianwu Dang
标识
DOI:10.1109/icassp39728.2021.9413608
摘要

Due to the more robust characteristics compared to unimodal, audio-video multimodal emotion recognition (MER) has attracted a lot of attention. The efficiency of representation fusion algorithm often determines the performance of MER. Although there are many fusion algorithms, information redundancy and information complementarity are usually ignored. In this paper, we propose a novel representation fusion method, Capsule Graph Convolutional Network (CapsGCN). Firstly, after unimodal representation learning, the extracted audio and video representations are distilled by capsule network and encapsulated into multimodal capsules respectively. Multimodal capsules can effectively reduce data redundancy by the dynamic routing algorithm. Secondly, the multimodal capsules with their inter-relations and intra-relations are treated as a graph structure. The graph structure is learned by Graph Convolutional Network (GCN) to get hidden representation which is a good supplement for information complementarity. Finally, the multimodal capsules and hidden relational representation learned by CapsGCN are fed to multihead self-attention to balance the contributions of source representation and relational representation. To verify the performance, visualization of representation, the results of commonly used fusion methods, and ablation studies of the proposed CapsGCN are provided. Our proposed fusion method achieves 80.83% accuracy and 80.23% F1 score on eNTERFACE05'.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luffy189完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
8秒前
10秒前
简单的冬瓜完成签到,获得积分10
10秒前
20秒前
科研狗完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
31秒前
希文完成签到,获得积分10
31秒前
阜睿完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
37秒前
45秒前
量子星尘发布了新的文献求助10
50秒前
OCDer发布了新的文献求助10
54秒前
Antonio完成签到 ,获得积分10
1分钟前
北国雪未消完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
xiaxiao完成签到,获得积分0
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
青山完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
ming123ah完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661095
求助须知:如何正确求助?哪些是违规求助? 3222235
关于积分的说明 9744098
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734549