Heterogeneous nucleation models to predict grain size in solidification

等轴晶 成核 过冷 材料科学 奥斯特瓦尔德成熟 热力学 晶体生长 粒度 晶界 Crystal(编程语言) 化学物理 经典成核理论 晶粒生长 降水 冶金 微观结构 纳米技术 化学 物理 计算机科学 程序设计语言
作者
Sung Bae Park
出处
期刊:Progress in Materials Science [Elsevier]
卷期号:123: 100822-100822 被引量:11
标识
DOI:10.1016/j.pmatsci.2021.100822
摘要

Heterogeneous nucleation models in solidification have been developed to predict grain size over several decades. Up to now, the models are divided into three categories. The first is a well-known spherical cap nucleus model, where the effectiveness of nucleant, i.e. contact angle, is mainly focused on characterising the nucleants. In this model, the kinetics is determined by activation energy of embryos formation and the adsorption rate of atoms into the embryos. The second is a free growth model, in which active nucleants are determined by the size distribution of nucleants, and the heterogeneous nucleation is considered as an athermal process. The third is a constitutional supercooling model in which active nucleants are triggered by the constitutional undercooling at the front of growing crystals. All models remain uncertain to describe constitutionally the kinetics of heterogenous nucleation. In addition, the crystal growth rate affects significantly the heterogeneous nucleation events since growing crystals release solute atoms and heat. Therefore it is very important to approximate a flux of solute at the solid–liquid interface. In practical aspect, how to predict the grain size in the equiaxed zone is of interest. Equiaxed grains in front of growing columnar block the growth when the volume of equiaxed grains reaches a critical value, and eventually equiaxed zones are formed, i.e. columnar to equiaxed transition (CET). It is believed that the grain size in the equiaxed zone can be predicted using the cooling rate of remained melt at the time when CET occurs. In addition, further investigations on the efficiency variation of grain refiner are also required, although it is agreed that the efficiency decreases significantly with increasing amounts of nucleant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得20
刚刚
小周应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得30
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
Mask发布了新的文献求助10
1秒前
平常的芝麻完成签到,获得积分20
1秒前
pumpkin完成签到 ,获得积分10
1秒前
殷勤的老阴逼完成签到 ,获得积分20
3秒前
3秒前
yeqin发布了新的文献求助200
4秒前
果冻泥完成签到 ,获得积分20
5秒前
6秒前
5mg完成签到,获得积分10
6秒前
duang发布了新的文献求助10
6秒前
rynchee完成签到 ,获得积分10
10秒前
殷勤的老阴逼关注了科研通微信公众号
11秒前
火星上的闭月完成签到 ,获得积分10
11秒前
2028847955发布了新的文献求助10
12秒前
12秒前
13秒前
Singularity应助帅帅采纳,获得20
13秒前
14秒前
JamesPei应助轻松怜菡采纳,获得10
14秒前
烟花应助鄢廷芮采纳,获得10
15秒前
我爱谭松韵完成签到,获得积分10
15秒前
正在完成签到,获得积分10
15秒前
慕青应助落后妖妖采纳,获得10
15秒前
QSY发布了新的文献求助10
16秒前
78910发布了新的文献求助10
16秒前
yangwan发布了新的文献求助10
16秒前
18秒前
xixi完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
AsRNA完成签到,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376