亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Human disease clinical treatment network for the elderly: analysis of the medicare inpatient length of stay and readmission data

疾病 节点(物理) 医学 计算机科学 医疗保健 重症监护医学 经济增长 结构工程 工程类 病理 经济
作者
Hao Mei,Ruofan Jia,Guanzhong Qiao,Zhenqiu Lin,Shuangge Ma
出处
期刊:Biometrics [Wiley]
卷期号:79 (1): 404-416 被引量:4
标识
DOI:10.1111/biom.13549
摘要

Clinical treatment outcomes are the quality and cost targets that health-care providers aim to improve. Most existing outcome analysis focuses on a single disease or all diseases combined. Motivated by the success of molecular and phenotypic human disease networks (HDNs), this article develops a clinical treatment network that describes the interconnections among diseases in terms of inpatient length of stay (LOS) and readmission. Here one node represents one disease, and two nodes are linked with an edge if their LOS and number of readmissions are conditionally dependent. This is the very first HDN that jointly analyzes multiple clinical treatment outcomes at the pan-disease level. To accommodate the unique data characteristics, we propose a modeling approach based on two-part generalized linear models and estimation based on penalized integrative analysis. Analysis is conducted on the Medicare inpatient data of 100,000 randomly selected subjects for the period of January 2010 to December 2018. The resulted network has 1008 edges for 106 nodes. We analyze key network properties including connectivity, module/hub, and temporal variation. The findings are biomedically sensible. For example, high connectivity and hub conditions, such as disorders of lipid metabolism and essential hypertension, are identified. There are also findings that are less/not investigated in the literature. Overall, this study can provide additional insight into diseases' properties and their interconnections and assist more efficient disease management and health-care resources allocation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rofger完成签到,获得积分10
11秒前
魔幻的妖丽完成签到 ,获得积分10
25秒前
加菲丰丰应助科研通管家采纳,获得30
30秒前
大模型应助科研通管家采纳,获得10
30秒前
better完成签到,获得积分10
30秒前
37秒前
42秒前
1分钟前
harrywoo发布了新的文献求助30
1分钟前
1分钟前
sbmanishi发布了新的文献求助10
1分钟前
1分钟前
liuhui发布了新的文献求助200
1分钟前
1分钟前
徐炸炸完成签到,获得积分10
1分钟前
2分钟前
徐炸炸发布了新的文献求助10
2分钟前
ding应助ShenghuiH采纳,获得10
2分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
2分钟前
ShenghuiH发布了新的文献求助10
2分钟前
2分钟前
momo完成签到,获得积分10
2分钟前
harrywoo发布了新的文献求助30
2分钟前
诚心的鹏飞完成签到,获得积分20
3分钟前
零立方完成签到 ,获得积分10
3分钟前
sunran0完成签到 ,获得积分10
3分钟前
木之尹完成签到 ,获得积分10
4分钟前
卤肉饭与石榴汁完成签到,获得积分20
4分钟前
隐形曼青应助pengyyang采纳,获得10
4分钟前
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
ShenghuiH发布了新的文献求助10
4分钟前
4分钟前
游江大瓠完成签到 ,获得积分10
4分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344136
求助须知:如何正确求助?哪些是违规求助? 2971140
关于积分的说明 8646721
捐赠科研通 2651399
什么是DOI,文献DOI怎么找? 1451760
科研通“疑难数据库(出版商)”最低求助积分说明 672282
邀请新用户注册赠送积分活动 661790