18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma

放射科 核医学 列线图
作者
Jakoba J Eertink,Tim van de Brug,Sanne E Wiegers,G.J.C. Zwezerijnen,Elisabeth Pfaehler,Pieternella J. Lugtenburg,Bronno van der Holt,Henrica C.W. de Vet,Otto S. Hoekstra,Ronald Boellaard,Josée M. Zijlstra
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:: 1-11 被引量:3
标识
DOI:10.1007/s00259-021-05480-3
摘要

Accurate prognostic markers are urgently needed to identify diffuse large B-Cell lymphoma (DLBCL) patients at high risk of progression or relapse. Our purpose was to investigate the potential added value of baseline radiomics features to the international prognostic index (IPI) in predicting outcome after first-line treatment. Three hundred seventeen newly diagnosed DLBCL patients were included. Lesions were delineated using a semi-automated segmentation method (standardized uptake value ≥ 4.0), and 490 radiomics features were extracted. We used logistic regression with backward feature selection to predict 2-year time to progression (TTP). The area under the curve (AUC) of the receiver operator characteristic curve was calculated to assess model performance. High-risk groups were defined based on prevalence of events; diagnostic performance was assessed using positive and negative predictive values. The IPI model yielded an AUC of 0.68. The optimal radiomics model comprised the natural logarithms of metabolic tumor volume (MTV) and of SUVpeak and the maximal distance between the largest lesion and any other lesion (Dmaxbulk, AUC 0.76). Combining radiomics and clinical features showed that a combination of tumor- (MTV, SUVpeak and Dmaxbulk) and patient-related parameters (WHO performance status and age > 60 years) performed best (AUC 0.79). Adding radiomics features to clinical predictors increased PPV with 15%, with more accurate selection of high-risk patients compared to the IPI model (progression at 2-year TTP, 44% vs 28%, respectively). Prediction models using baseline radiomics combined with currently used clinical predictors identify patients at risk of relapse at baseline and significantly improved model performance. EudraCT: 2006–005,174-42, 01–08-2008.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大碗完成签到 ,获得积分10
1秒前
vsoar发布了新的文献求助10
3秒前
龙江游侠发布了新的文献求助10
4秒前
咕咕咕咕咕纯完成签到,获得积分20
4秒前
4秒前
pipi发布了新的文献求助10
5秒前
小碗完成签到 ,获得积分10
7秒前
CYLiu关注了科研通微信公众号
8秒前
12秒前
龙江游侠完成签到,获得积分10
15秒前
15秒前
花开米兰城完成签到,获得积分10
15秒前
斯文败类应助樱满集采纳,获得10
17秒前
17秒前
鉴定为学计算学的完成签到,获得积分10
17秒前
研友_nPPzon完成签到,获得积分10
20秒前
21秒前
天天快乐应助泥瓦酱采纳,获得10
21秒前
222完成签到,获得积分20
21秒前
23秒前
丘比特应助猪肉水饺采纳,获得10
24秒前
25秒前
Dr_Sean完成签到,获得积分10
25秒前
wanci应助能干数据线采纳,获得10
26秒前
木木夕完成签到,获得积分10
27秒前
开朗的板凳完成签到,获得积分20
27秒前
222发布了新的文献求助30
28秒前
28秒前
30秒前
Larvenpiz完成签到,获得积分10
30秒前
31秒前
猪肉水饺发布了新的文献求助10
33秒前
22222222aa发布了新的文献求助10
34秒前
丹丹丹应助liguanyu1078采纳,获得10
34秒前
Shabby0-0完成签到,获得积分10
35秒前
re发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助10
36秒前
夏沫完成签到,获得积分10
38秒前
Gaahung完成签到,获得积分10
40秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010813
求助须知:如何正确求助?哪些是违规求助? 3550492
关于积分的说明 11305855
捐赠科研通 3284855
什么是DOI,文献DOI怎么找? 1810889
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811505