18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma

放射科 核医学 列线图
作者
Jakoba J Eertink,Tim van de Brug,Sanne E Wiegers,G.J.C. Zwezerijnen,Elisabeth Pfaehler,Pieternella J. Lugtenburg,Bronno van der Holt,Henrica C.W. de Vet,Otto S. Hoekstra,Ronald Boellaard,Josée M. Zijlstra
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:: 1-11 被引量:3
标识
DOI:10.1007/s00259-021-05480-3
摘要

Accurate prognostic markers are urgently needed to identify diffuse large B-Cell lymphoma (DLBCL) patients at high risk of progression or relapse. Our purpose was to investigate the potential added value of baseline radiomics features to the international prognostic index (IPI) in predicting outcome after first-line treatment. Three hundred seventeen newly diagnosed DLBCL patients were included. Lesions were delineated using a semi-automated segmentation method (standardized uptake value ≥ 4.0), and 490 radiomics features were extracted. We used logistic regression with backward feature selection to predict 2-year time to progression (TTP). The area under the curve (AUC) of the receiver operator characteristic curve was calculated to assess model performance. High-risk groups were defined based on prevalence of events; diagnostic performance was assessed using positive and negative predictive values. The IPI model yielded an AUC of 0.68. The optimal radiomics model comprised the natural logarithms of metabolic tumor volume (MTV) and of SUVpeak and the maximal distance between the largest lesion and any other lesion (Dmaxbulk, AUC 0.76). Combining radiomics and clinical features showed that a combination of tumor- (MTV, SUVpeak and Dmaxbulk) and patient-related parameters (WHO performance status and age > 60 years) performed best (AUC 0.79). Adding radiomics features to clinical predictors increased PPV with 15%, with more accurate selection of high-risk patients compared to the IPI model (progression at 2-year TTP, 44% vs 28%, respectively). Prediction models using baseline radiomics combined with currently used clinical predictors identify patients at risk of relapse at baseline and significantly improved model performance. EudraCT: 2006–005,174-42, 01–08-2008.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WxChen完成签到,获得积分10
刚刚
椰子发布了新的文献求助10
刚刚
WJ发布了新的文献求助10
1秒前
xhuryts完成签到,获得积分10
1秒前
Ll发布了新的文献求助10
1秒前
徐翩跹完成签到,获得积分10
2秒前
不喝可乐发布了新的文献求助10
2秒前
Dream完成签到,获得积分10
2秒前
科研通AI5应助F冯采纳,获得10
2秒前
感谢大哥的帮助完成签到 ,获得积分10
2秒前
qiongqiong完成签到,获得积分10
2秒前
米娅完成签到,获得积分10
3秒前
3秒前
强健的妙菱完成签到,获得积分10
4秒前
4秒前
小蘑菇应助温柔若采纳,获得10
4秒前
李爱国应助通~采纳,获得10
4秒前
经竺应助小马哥采纳,获得10
4秒前
6秒前
单纯的芷蝶完成签到,获得积分10
6秒前
研友完成签到,获得积分10
6秒前
勤奋若风完成签到,获得积分10
6秒前
英姑应助每天都想下班采纳,获得10
7秒前
shooin完成签到,获得积分10
7秒前
佳佳发布了新的文献求助10
7秒前
MADKAI发布了新的文献求助10
7秒前
lin完成签到,获得积分20
8秒前
思源应助科研民工采纳,获得10
8秒前
忧郁凌波完成签到,获得积分10
8秒前
姜姜姜完成签到 ,获得积分10
9秒前
凶狠的绿兰完成签到,获得积分10
10秒前
多多少少忖测的情完成签到,获得积分10
10秒前
科研通AI5应助兴奋的宛白采纳,获得10
11秒前
12秒前
zhanlonglsj发布了新的文献求助10
12秒前
12秒前
芍药完成签到,获得积分10
12秒前
Yogita完成签到,获得积分10
13秒前
DoctorYan完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740