已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma

放射科 核医学 列线图
作者
Jakoba J Eertink,Tim van de Brug,Sanne E Wiegers,G.J.C. Zwezerijnen,Elisabeth Pfaehler,Pieternella J. Lugtenburg,Bronno van der Holt,Henrica C.W. de Vet,Otto S. Hoekstra,Ronald Boellaard,Josée M. Zijlstra
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:: 1-11 被引量:3
标识
DOI:10.1007/s00259-021-05480-3
摘要

Accurate prognostic markers are urgently needed to identify diffuse large B-Cell lymphoma (DLBCL) patients at high risk of progression or relapse. Our purpose was to investigate the potential added value of baseline radiomics features to the international prognostic index (IPI) in predicting outcome after first-line treatment. Three hundred seventeen newly diagnosed DLBCL patients were included. Lesions were delineated using a semi-automated segmentation method (standardized uptake value ≥ 4.0), and 490 radiomics features were extracted. We used logistic regression with backward feature selection to predict 2-year time to progression (TTP). The area under the curve (AUC) of the receiver operator characteristic curve was calculated to assess model performance. High-risk groups were defined based on prevalence of events; diagnostic performance was assessed using positive and negative predictive values. The IPI model yielded an AUC of 0.68. The optimal radiomics model comprised the natural logarithms of metabolic tumor volume (MTV) and of SUVpeak and the maximal distance between the largest lesion and any other lesion (Dmaxbulk, AUC 0.76). Combining radiomics and clinical features showed that a combination of tumor- (MTV, SUVpeak and Dmaxbulk) and patient-related parameters (WHO performance status and age > 60 years) performed best (AUC 0.79). Adding radiomics features to clinical predictors increased PPV with 15%, with more accurate selection of high-risk patients compared to the IPI model (progression at 2-year TTP, 44% vs 28%, respectively). Prediction models using baseline radiomics combined with currently used clinical predictors identify patients at risk of relapse at baseline and significantly improved model performance. EudraCT: 2006–005,174-42, 01–08-2008.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吉祥发布了新的文献求助10
刚刚
木禾发布了新的文献求助10
刚刚
Bonnie发布了新的文献求助10
1秒前
闫123完成签到,获得积分10
2秒前
木由发布了新的文献求助10
4秒前
李爱国应助蓦然采纳,获得10
5秒前
爆米花应助小王采纳,获得30
7秒前
科目三应助小王采纳,获得30
7秒前
可爱的函函应助小王采纳,获得30
7秒前
Lucas应助小王采纳,获得30
7秒前
爆米花应助小王采纳,获得30
7秒前
英姑应助小王采纳,获得30
7秒前
my应助小王采纳,获得30
7秒前
my应助小王采纳,获得30
7秒前
my应助小王采纳,获得30
7秒前
my应助小王采纳,获得30
7秒前
快乐不二完成签到 ,获得积分10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
9秒前
10秒前
英俊的铭应助aj采纳,获得10
12秒前
12秒前
zzzz完成签到 ,获得积分10
13秒前
12123浪发布了新的文献求助10
13秒前
yuzi完成签到,获得积分10
13秒前
希望天下0贩的0应助雨a采纳,获得10
13秒前
15秒前
直率铁身完成签到,获得积分10
15秒前
李BO发布了新的文献求助20
15秒前
15秒前
嘻嘻哈哈发布了新的文献求助30
16秒前
张萌完成签到 ,获得积分10
19秒前
小陈不尘发布了新的文献求助10
19秒前
my应助小王采纳,获得30
19秒前
my应助小王采纳,获得30
19秒前
my应助小王采纳,获得30
19秒前
my应助小王采纳,获得30
19秒前
my应助小王采纳,获得30
19秒前
my应助小王采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301583
求助须知:如何正确求助?哪些是违规求助? 4449070
关于积分的说明 13847752
捐赠科研通 4335139
什么是DOI,文献DOI怎么找? 2380126
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341130