18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma

放射科 核医学 列线图
作者
Jakoba J Eertink,Tim van de Brug,Sanne E Wiegers,G.J.C. Zwezerijnen,Elisabeth Pfaehler,Pieternella J. Lugtenburg,Bronno van der Holt,Henrica C.W. de Vet,Otto S. Hoekstra,Ronald Boellaard,Josée M. Zijlstra
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:: 1-11 被引量:3
标识
DOI:10.1007/s00259-021-05480-3
摘要

Accurate prognostic markers are urgently needed to identify diffuse large B-Cell lymphoma (DLBCL) patients at high risk of progression or relapse. Our purpose was to investigate the potential added value of baseline radiomics features to the international prognostic index (IPI) in predicting outcome after first-line treatment. Three hundred seventeen newly diagnosed DLBCL patients were included. Lesions were delineated using a semi-automated segmentation method (standardized uptake value ≥ 4.0), and 490 radiomics features were extracted. We used logistic regression with backward feature selection to predict 2-year time to progression (TTP). The area under the curve (AUC) of the receiver operator characteristic curve was calculated to assess model performance. High-risk groups were defined based on prevalence of events; diagnostic performance was assessed using positive and negative predictive values. The IPI model yielded an AUC of 0.68. The optimal radiomics model comprised the natural logarithms of metabolic tumor volume (MTV) and of SUVpeak and the maximal distance between the largest lesion and any other lesion (Dmaxbulk, AUC 0.76). Combining radiomics and clinical features showed that a combination of tumor- (MTV, SUVpeak and Dmaxbulk) and patient-related parameters (WHO performance status and age > 60 years) performed best (AUC 0.79). Adding radiomics features to clinical predictors increased PPV with 15%, with more accurate selection of high-risk patients compared to the IPI model (progression at 2-year TTP, 44% vs 28%, respectively). Prediction models using baseline radiomics combined with currently used clinical predictors identify patients at risk of relapse at baseline and significantly improved model performance. EudraCT: 2006–005,174-42, 01–08-2008.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆思柔完成签到,获得积分10
1秒前
3秒前
4秒前
大模型应助武淑晴采纳,获得10
4秒前
5秒前
Criminology34应助Dylan采纳,获得20
6秒前
Ava应助桔梗采纳,获得10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
小二郎应助OrangeWang采纳,获得10
10秒前
Fff发布了新的文献求助10
10秒前
10秒前
行走的鱼完成签到,获得积分10
11秒前
12秒前
香蕉觅云应助小D爱科研采纳,获得30
13秒前
文静慕青发布了新的文献求助10
14秒前
14秒前
GH发布了新的文献求助10
15秒前
阿木发布了新的文献求助10
15秒前
赵生发布了新的文献求助10
16秒前
16秒前
彭于晏应助Ushuaia采纳,获得10
17秒前
超帅的发布了新的文献求助10
17秒前
17秒前
18秒前
lemon 1118完成签到,获得积分10
18秒前
18秒前
18秒前
保持理智完成签到,获得积分10
21秒前
研友_VZG7GZ应助健壮的悟空采纳,获得10
21秒前
YC发布了新的文献求助10
21秒前
22秒前
ghhhh6完成签到 ,获得积分10
22秒前
Angel应助猪猪hero采纳,获得10
23秒前
Zz完成签到 ,获得积分10
23秒前
lemon 1118发布了新的文献求助10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735237
求助须知:如何正确求助?哪些是违规求助? 5359154
关于积分的说明 15328898
捐赠科研通 4879502
什么是DOI,文献DOI怎么找? 2622007
邀请新用户注册赠送积分活动 1571188
关于科研通互助平台的介绍 1527971