18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma

放射科 核医学 列线图
作者
Jakoba J Eertink,Tim van de Brug,Sanne E Wiegers,G.J.C. Zwezerijnen,Elisabeth Pfaehler,Pieternella J. Lugtenburg,Bronno van der Holt,Henrica C.W. de Vet,Otto S. Hoekstra,Ronald Boellaard,Josée M. Zijlstra
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:: 1-11 被引量:3
标识
DOI:10.1007/s00259-021-05480-3
摘要

Accurate prognostic markers are urgently needed to identify diffuse large B-Cell lymphoma (DLBCL) patients at high risk of progression or relapse. Our purpose was to investigate the potential added value of baseline radiomics features to the international prognostic index (IPI) in predicting outcome after first-line treatment. Three hundred seventeen newly diagnosed DLBCL patients were included. Lesions were delineated using a semi-automated segmentation method (standardized uptake value ≥ 4.0), and 490 radiomics features were extracted. We used logistic regression with backward feature selection to predict 2-year time to progression (TTP). The area under the curve (AUC) of the receiver operator characteristic curve was calculated to assess model performance. High-risk groups were defined based on prevalence of events; diagnostic performance was assessed using positive and negative predictive values. The IPI model yielded an AUC of 0.68. The optimal radiomics model comprised the natural logarithms of metabolic tumor volume (MTV) and of SUVpeak and the maximal distance between the largest lesion and any other lesion (Dmaxbulk, AUC 0.76). Combining radiomics and clinical features showed that a combination of tumor- (MTV, SUVpeak and Dmaxbulk) and patient-related parameters (WHO performance status and age > 60 years) performed best (AUC 0.79). Adding radiomics features to clinical predictors increased PPV with 15%, with more accurate selection of high-risk patients compared to the IPI model (progression at 2-year TTP, 44% vs 28%, respectively). Prediction models using baseline radiomics combined with currently used clinical predictors identify patients at risk of relapse at baseline and significantly improved model performance. EudraCT: 2006–005,174-42, 01–08-2008.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星落枝头完成签到,获得积分20
1秒前
倩倩发布了新的文献求助10
1秒前
青鸟飞鱼发布了新的文献求助10
3秒前
5秒前
CodeCraft应助Millennial采纳,获得10
7秒前
Nice完成签到,获得积分10
9秒前
小马甲应助青鸟飞鱼采纳,获得10
13秒前
韩倩完成签到 ,获得积分10
18秒前
KK完成签到 ,获得积分10
18秒前
温水煮青蛙完成签到 ,获得积分10
21秒前
汉堡包应助科研通管家采纳,获得10
25秒前
田様应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
烟花应助科研通管家采纳,获得10
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
25秒前
迷你的怀莲完成签到 ,获得积分10
25秒前
情怀应助云上人采纳,获得10
27秒前
28秒前
liudw完成签到,获得积分10
30秒前
30秒前
Siling完成签到 ,获得积分10
31秒前
32秒前
32秒前
xzc给xzc的求助进行了留言
33秒前
星辰大海应助俭朴的红牛采纳,获得10
33秒前
34秒前
工力所发布了新的文献求助30
37秒前
zzzzzzzzzzzzb发布了新的文献求助10
37秒前
delta发布了新的文献求助10
38秒前
酷波er应助朴实乐巧采纳,获得10
38秒前
shooin完成签到,获得积分10
40秒前
蔡小娜关注了科研通微信公众号
41秒前
zzzzzzzzzzzzb完成签到,获得积分10
42秒前
43秒前
xxxidgkris发布了新的文献求助30
45秒前
46秒前
天问完成签到 ,获得积分10
47秒前
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023