作者
Phei Er Saw,Xiaoding Xu,Sunghyun Kim,Sangyong Jon
摘要
ConspectusMost therapeutic peptides available on the market today are naturally occurring hormones or protein fragments that were serendipitously discovered to possess therapeutic effects. However, the limited repertoire of available natural resources presents difficulties for the development of new peptide drug candidates. Traditional peptides possess several shortcomings that must be addressed for biomedical applications, including relatively low affinity or specificity toward biological targets compared to antibody- and protein scaffold-based affinity molecules, poor in vivo stability owing to rapid enzymatic degradation, and rapid clearance from circulation owing to their small size. Going forward, it will be increasingly important for scientists to develop novel classes of high-affinity and -specificity peptides against desired targets that mitigate these limitations while remaining compatible with pharmaceutical manufacturing processes. Recently, several highly constrained, artificial cyclic peptides have emerged as platforms capable of generating high-affinity peptide binders against various disease-associated protein targets by combining with phage or mRNA display method, some of which have entered clinical trials. In contrast, although linear peptides are relatively easy to synthesize cost-effectively and modify site-specifically at either N- or C-termini compared to cyclic peptides, there have been few linear peptide-based platforms that can provide high-affinity and -specificity peptide binders.In this Account, we describe the creation and development of a novel class of high-affinity peptides, termed "aptide"—from the Latin word "aptus" meaning "to fit" and "peptide"—and summarize their biomedical applications. In the first part, we consider the design and creation of aptides, with a focus on their unique structural features and binding mode, and address screening and identification of target protein-specific aptides. We also discuss advantages of the aptide platform over ordinary linear peptides lacking preorganized structures in terms of the affinity and specificity of identified peptide binders against target molecules. In the second part, we describe the potential biomedical applications of various target-specific aptides, ranging from imaging and therapy to theranostics, according to the types of aptides and diseases. We show that certain aptides can not only bind to a target protein but also inhibit its biological function, thereby showing potential as therapeutics per se. Further, aptides specific for cancer-associated protein antigens can be used as escort molecules or targeting ligands for delivery of chemotherapeutics, cytokine proteins, and nanomedicines, such as liposomes and magnetic particles, to tumors, thereby substantially improving therapeutic effects. Finally, we present a strategy capable of overcoming the critical issue of short blood circulation time associated with most peptides by constructing a hybrid system between an aptide and a hapten cotinine-specific antibody.