法拉第效率
格式化
材料科学
纳米结构
工作职能
掺杂剂
兴奋剂
化学工程
离子
电催化剂
电化学
催化作用
纳米技术
化学
物理化学
光电子学
电极
有机化学
工程类
图层(电子)
作者
Junliang Zhang,Lianchun Ding,Weipei Sun,Wentuan Bi,Zhengcui Wu,Feng Gao
标识
DOI:10.1016/j.jallcom.2021.161770
摘要
It is an urgent imperative to convert CO2 molecules into valuable chemicals or fuels for mitigating the greenhouse effect and energy dilemma. Herein, γ-In2S3 nanosheets-composed flowerlike nanostructure doped by tunable amount of Al3+ ions was fabricated by a one-step solution-phase avenue for efficient CO2ER to formate. The particular nanosheets-composed flowerlike nanostructure exhibited good gas-permeable behavior, enlarging the capacity of CO2 adsorption and accelerating the mass-transport efficiency. The Al dopant in γ-In2S3 optimized the electronic structure of γ-In2S3, which enhanced the carrier density, conductivity, and exposed active sites. Besides, Al doping reduced the work function of γ-In2S3, which brought about the fast Faradaic process of CO2 activation and speeded up the subsequent reduction reaction. The optimal Al4.8%-In2S3 displayed the maximal formate Faradaic efficiency (FEHCOO–) of 91.2% at −1.0 V and maintained with a high FEHCOO–> 80% in a potential range of −0.9 to −1.2 V. Moreover, it exhibited a high formate energy efficiency (EEHCOO–) of 58.5% at −1.0 V and kept with a high EEHCOO–> 50% in a potential range of −0.9 to −1.2 V. Besides, Al4.8%-In2S3 delivered the partial current density of 23 mA cm−2 at −1.0 V for formate and increased to 31.7 mA cm−2 at −1.2 V. It also maintained over 90.8% of FEHCOO– and the current value decayed less than 2% after 14 h continuous electrocatalysis at −1.0 V, exhibiting remarkable operational stability in CO2ER. This work optimized electronic structure of metal chalcogenides by heterocations doping toward highly active and selective CO2ER to formate and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI