A Radiomics Signature-Based Nomogram to Predict the Progression-Free Survival of Patients With Hepatocellular Carcinoma After Transcatheter Arterial Chemoembolization Plus Radiofrequency Ablation

医学 肝细胞癌 经导管动脉化疗栓塞 无线电技术 列线图 队列 单变量 Lasso(编程语言) 内科学 肿瘤科 一致性 放射科 射频消融术 多元统计 比例危险模型 烧蚀 统计 万维网 计算机科学 数学
作者
Shiji Fang,Linqiang Lai,Jinyu Zhu,Liyun Zheng,Yuanyuan Xu,Weiqian Chen,Fazong Wu,Xulu Wu,Minjiang Chen,Qiaoyou Weng,Jiansong Ji,Zhongwei Zhao,Jianfei Tu
出处
期刊:Frontiers in Molecular Biosciences [Frontiers Media SA]
卷期号:8 被引量:7
标识
DOI:10.3389/fmolb.2021.662366
摘要

Objective: The study aims to establish an magnetic resonance imaging radiomics signature-based nomogram for predicting the progression-free survival of intermediate and advanced hepatocellular carcinoma (HCC) patients treated with transcatheter arterial chemoembolization (TACE) plus radiofrequency ablation Materials and Methods: A total of 113 intermediate and advanced HCC patients treated with TACE and RFA were eligible for this study. Patients were classified into a training cohort ( n = 78 cases) and a validation cohort ( n = 35 cases). Radiomics features were extracted from contrast-enhanced T1W images by analysis kit software. Dimension reduction was conducted to select optimal features using the least absolute shrinkage and selection operator (LASSO). A rad-score was calculated and used to classify the patients into high-risk and low-risk groups and further integrated into multivariate Cox analysis. Two prediction models based on radiomics signature combined with or without clinical factors and a clinical model based on clinical factors were developed. A nomogram comcined radiomics signature and clinical factors were established and the concordance index (C-index) was used for measuring discrimination ability of the model, calibration curve was used for measuring calibration ability, and decision curve and clinical impact curve are used for measuring clinical utility. Results: Eight radiomics features were selected by LASSO, and the cut-off of the Rad-score was 1.62. The C-index of the radiomics signature for PFS was 0.646 (95%: 0.582–0.71) in the training cohort and 0.669 (95% CI:0.572–0.766) in validation cohort. The median PFS of the low-risk group [30.4 (95% CI: 19.41–41.38)] months was higher than that of the high-risk group [8.1 (95% CI: 4.41–11.79)] months in the training cohort (log rank test, z = 16.58, p < 0.001) and was verified in the validation cohort. Multivariate Cox analysis showed that BCLC stage [hazard ratio (HR): 2.52, 95% CI: 1.42–4.47, p = 0.002], AFP level (HR: 2.01, 95% CI: 1.01–3.99 p = 0.046), time interval (HR: 0.48, 95% CI: 0.26–0.87, p = 0.016) and radiomics signature (HR 2.98, 95% CI: 1.60–5.51, p = 0.001) were independent prognostic factors of PFS in the training cohort. The C-index of the combined model in the training cohort was higher than that of clinical model for PFS prediction [0.722 (95% CI: 0.657–0.786) vs. 0.669 (95% CI: 0.657–0.786), p <0.001]. Similarly, The C-index of the combined model in the validation cohort, was higher than that of clinical model [0.821 (95% CI: 0.726–0.915) vs. 0.76 (95% CI: 0.667–0.851), p = 0.004]. The calibration curve, decision curve and clinical impact curve showed that the nomogram can be used to accurately predict the PFS of patients. Conclusion: The radiomics signature was a prognostic risk factor, and a nomogram combined radiomics and clinical factors acts as a new strategy for predicted the PFS of intermediate and advanced HCC treated with TACE plus RFA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小章发布了新的文献求助10
1秒前
金cheng5发布了新的文献求助10
1秒前
1秒前
zzz关闭了zzz文献求助
1秒前
1秒前
Jasper应助我想part2采纳,获得10
1秒前
共享精神应助HR112采纳,获得10
2秒前
李健应助老实的电源采纳,获得10
2秒前
2秒前
天真书竹发布了新的文献求助10
2秒前
MengpoZhao发布了新的文献求助10
3秒前
风趣凌柏发布了新的文献求助10
3秒前
3秒前
4秒前
ss完成签到,获得积分10
5秒前
清新的红酒完成签到,获得积分10
5秒前
5秒前
6秒前
小qin完成签到,获得积分10
7秒前
7秒前
安静夜梅发布了新的文献求助10
7秒前
爆米花应助哇哇哇采纳,获得10
7秒前
不是一个名字完成签到,获得积分10
9秒前
xiaowei发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助30
10秒前
11秒前
bkagyin应助idrees采纳,获得30
11秒前
lyb完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
英吉利25发布了新的文献求助10
14秒前
液体剑0932发布了新的文献求助10
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
金勋666发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728188
求助须知:如何正确求助?哪些是违规求助? 5311904
关于积分的说明 15313531
捐赠科研通 4875514
什么是DOI,文献DOI怎么找? 2618817
邀请新用户注册赠送积分活动 1568419
关于科研通互助平台的介绍 1525058