Multiple abnormality classification in wireless capsule endoscopy images based on EfficientNet using attention mechanism

胶囊内镜 计算机科学 卷积神经网络 异常 分类器(UML) 人工智能 无线 内窥镜检查 模式识别(心理学) 人工神经网络 医学 计算机视觉 放射科 电信 精神科
作者
Xudong Guo,Lulu Zhang,Youguo Hao,Linqi Zhang,Zhang Liu,Jiannan Liu
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:92 (9) 被引量:4
标识
DOI:10.1063/5.0054161
摘要

The wireless capsule endoscopy (WCE) procedure produces tens of thousands of images of the digestive tract, for which the use of the manual reading process is full of challenges. Convolutional neural networks are used to automatically detect lesions in WCE images. However, studies on clinical multilesion detection are scarce, and it is difficult to effectively balance the sensitivity to multiple lesions. A strategy for detecting multiple lesions is proposed, wherein common vascular and inflammatory lesions can be automatically and quickly detected on capsule endoscopic images. Based on weakly supervised learning, EfficientNet is fine-tuned to extract the endoscopic image features. Combining spatial features and channel features, the proposed attention network is then used as a classifier to obtain three classifications. The accuracy and speed of the model were compared with those of the ResNet121 and InceptionNetV4 models. It was tested on a public WCE image dataset obtained from 4143 subjects. On the computer-assisted diagnosis for capsule endoscopy database, the method gives a sensitivity of 96.67% for vascular lesions and 93.33% for inflammatory lesions. The precision for vascular lesions was 92.80%, and that for inflammatory lesions was 95.73%. The accuracy was 96.11%, which is 1.11% higher than that of the latest InceptionNetV4 network. Prediction for an image only requires 14 ms, which balances the accuracy and speed comparatively better. This strategy can be used as an auxiliary diagnostic method for specialists for the rapid reading of clinical capsule endoscopes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助内向怀曼采纳,获得10
1秒前
1秒前
fnnnnn完成签到,获得积分10
2秒前
热情花生关注了科研通微信公众号
2秒前
玥瑶完成签到 ,获得积分10
3秒前
3秒前
www完成签到,获得积分10
4秒前
6秒前
张香香发布了新的文献求助50
6秒前
www发布了新的文献求助10
7秒前
11111完成签到,获得积分10
8秒前
云狼踏雪发布了新的文献求助10
8秒前
YY再摆烂发布了新的文献求助10
9秒前
天衍四九发布了新的文献求助10
9秒前
Versa完成签到,获得积分10
10秒前
脑洞疼应助活佛济公采纳,获得10
10秒前
10秒前
Labubu发布了新的文献求助30
10秒前
10秒前
ouiiiblue完成签到,获得积分10
13秒前
小二郎应助ln采纳,获得10
14秒前
una发布了新的文献求助10
15秒前
15秒前
17秒前
17秒前
古月发布了新的文献求助10
17秒前
18秒前
合适含蕾完成签到,获得积分10
20秒前
20秒前
lei发布了新的文献求助10
20秒前
Binbin发布了新的文献求助10
21秒前
爆米花应助古月采纳,获得10
22秒前
猪猪hero应助某奈在看海采纳,获得10
22秒前
22秒前
太叔易云发布了新的文献求助10
22秒前
内向怀曼发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
彭于晏应助lei采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956069
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107074
捐赠科研通 3232847
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870396
科研通“疑难数据库(出版商)”最低求助积分说明 802019