Multiple abnormality classification in wireless capsule endoscopy images based on EfficientNet using attention mechanism

胶囊内镜 计算机科学 卷积神经网络 异常 分类器(UML) 人工智能 无线 内窥镜检查 模式识别(心理学) 人工神经网络 医学 计算机视觉 放射科 电信 精神科
作者
Xudong Guo,Lulu Zhang,Youguo Hao,Linqi Zhang,Zhang Liu,Jiannan Liu
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:92 (9) 被引量:4
标识
DOI:10.1063/5.0054161
摘要

The wireless capsule endoscopy (WCE) procedure produces tens of thousands of images of the digestive tract, for which the use of the manual reading process is full of challenges. Convolutional neural networks are used to automatically detect lesions in WCE images. However, studies on clinical multilesion detection are scarce, and it is difficult to effectively balance the sensitivity to multiple lesions. A strategy for detecting multiple lesions is proposed, wherein common vascular and inflammatory lesions can be automatically and quickly detected on capsule endoscopic images. Based on weakly supervised learning, EfficientNet is fine-tuned to extract the endoscopic image features. Combining spatial features and channel features, the proposed attention network is then used as a classifier to obtain three classifications. The accuracy and speed of the model were compared with those of the ResNet121 and InceptionNetV4 models. It was tested on a public WCE image dataset obtained from 4143 subjects. On the computer-assisted diagnosis for capsule endoscopy database, the method gives a sensitivity of 96.67% for vascular lesions and 93.33% for inflammatory lesions. The precision for vascular lesions was 92.80%, and that for inflammatory lesions was 95.73%. The accuracy was 96.11%, which is 1.11% higher than that of the latest InceptionNetV4 network. Prediction for an image only requires 14 ms, which balances the accuracy and speed comparatively better. This strategy can be used as an auxiliary diagnostic method for specialists for the rapid reading of clinical capsule endoscopes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mawenxing完成签到,获得积分10
2秒前
kk发布了新的文献求助10
3秒前
我是老大应助示羊采纳,获得10
3秒前
Akim应助yyy采纳,获得10
4秒前
4秒前
5秒前
Ava应助kuaijack采纳,获得10
5秒前
lul完成签到,获得积分10
5秒前
要强的人完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
胡小壳完成签到,获得积分10
7秒前
鱼新碟发布了新的文献求助10
9秒前
通关驳回了qikkk应助
10秒前
zero完成签到,获得积分10
11秒前
lul发布了新的文献求助10
12秒前
12秒前
orixero应助胡小壳采纳,获得10
12秒前
hzw发布了新的文献求助10
13秒前
北beibe发布了新的文献求助20
13秒前
15秒前
15秒前
高兴的万宝路完成签到,获得积分10
18秒前
18秒前
111完成签到,获得积分10
18秒前
19秒前
20秒前
hzw完成签到,获得积分10
20秒前
书俭完成签到,获得积分10
20秒前
大树发布了新的文献求助10
21秒前
Jasper应助米鹿子采纳,获得10
21秒前
kuaijack发布了新的文献求助10
22秒前
现代豪完成签到,获得积分10
22秒前
跳跃幻儿发布了新的文献求助50
22秒前
科研通AI2S应助Jinnel采纳,获得10
23秒前
24秒前
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243630
求助须知:如何正确求助?哪些是违规求助? 2887516
关于积分的说明 8248754
捐赠科研通 2556147
什么是DOI,文献DOI怎么找? 1384291
科研通“疑难数据库(出版商)”最低求助积分说明 649827
邀请新用户注册赠送积分活动 625755