Unsupervised Cycle-Consistent Generative Adversarial Networks for Pan Sharpening

全色胶片 计算机科学 锐化 人工智能 比例(比率) 一致性(知识库) 发电机(电路理论) 基本事实 多光谱图像 对抗制 模式识别(心理学) 地图学 量子力学 物理 功率(物理) 地理
作者
Huanyu Zhou,Qingjie Liu,Dawei Weng,Yunhong Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:8
标识
DOI:10.1109/tgrs.2022.3166528
摘要

Deep learning-based pan sharpening has received significant research interest in recent years. Most of the existing methods fall into the supervised learning framework in which they downsample the multispectral (MS) and panchromatic (PAN) images and regard the original MS images as ground truths to form training samples based on Wald’s protocol. Although impressive performance could be achieved, they have difficulties when generalizing to the original full-scale images due to the scale gap, which makes them lack of practicability. In this article, we propose an unsupervised generative adversarial framework that learns from the full-scale images without the ground truths to alleviate this problem. We first extract the modality-specific features from the PAN and MS images with a two-stream generator, perform fusion in the feature domain, and then reconstruct the pan-sharpened images. Furthermore, we introduce a novel hybrid loss based on the cycle-consistency and adversarial scheme to improve the performance. Comparison experiments with the state-of-the-art methods are conducted on GaoFen-2 (GF-2) and WorldView-3 satellites. Results demonstrate that the proposed method can greatly improve the pan-sharpening performance on the full-scale images, which clearly shows its practical value. Codes are available at https://github.com/zhysora/UCGAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
毛豆应助坚定睫毛膏采纳,获得10
刚刚
2秒前
Wangyan发布了新的文献求助10
3秒前
天天快乐应助虚心忘幽采纳,获得10
5秒前
搜集达人应助感动归尘采纳,获得10
5秒前
sun发布了新的文献求助10
5秒前
Jasper应助崔文兴采纳,获得10
7秒前
完美世界应助柠小檬c采纳,获得10
8秒前
8秒前
9秒前
映菡完成签到,获得积分10
11秒前
Wangyan完成签到,获得积分10
11秒前
so000应助雪糕采纳,获得10
12秒前
prosperp应助雪糕采纳,获得10
12秒前
Lucas应助雪糕采纳,获得30
12秒前
晏小敏发布了新的文献求助10
12秒前
所所应助LUpy采纳,获得10
12秒前
可爱的函函应助sun采纳,获得10
13秒前
13秒前
科研通AI2S应助时生111采纳,获得10
14秒前
15秒前
卷卷516发布了新的文献求助10
15秒前
辛勤尔白完成签到 ,获得积分10
16秒前
深情安青应助LXX采纳,获得10
17秒前
abxxl应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
chen应助科研通管家采纳,获得10
18秒前
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
18秒前
chaoschen发布了新的文献求助30
19秒前
20秒前
岁岁完成签到 ,获得积分10
25秒前
大罗完成签到,获得积分10
26秒前
26秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458734
求助须知:如何正确求助?哪些是违规求助? 3053505
关于积分的说明 9036831
捐赠科研通 2742695
什么是DOI,文献DOI怎么找? 1504509
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519