EPSILON: An Efficient Planning System for Automated Vehicles in Highly Interactive Environments

部分可观测马尔可夫决策过程 计算机科学 马尔可夫决策过程 运动规划 规划师 自动计划和调度 过程(计算) 弹道 钥匙(锁) 人工智能 空格(标点符号) 马尔可夫过程 马尔可夫链 模拟 机器人 机器学习 马尔可夫模型 统计 操作系统 物理 计算机安全 数学 天文
作者
Wenchao Ding,Lu Zhang,Jing Chen,Shaojie Shen
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:38 (2): 1118-1138 被引量:44
标识
DOI:10.1109/tro.2021.3104254
摘要

In this article, we present an efficient planning system for automated vehicles in highly interactive environments (EPSILON). EPSILON is an efficient interaction-aware planning system for automated driving, and is extensively validated in both simulation and real-world dense city traffic. It follows a hierarchical structure with an interactive behavior planning layer and an optimization-based motion planning layer. The behavior planning is formulated from a partially observable Markov decision process (POMDP), but is much more efficient than naively applying a POMDP to the decision-making problem. The key to efficiency is guided branching in both the action space and observation space, which decomposes the original problem into a limited number of closed-loop policy evaluations. Moreover, we introduce a new driver model with a safety mechanism to overcome the risk induced by the potential imperfectness of prior knowledge. For motion planning, we employ a spatio-temporal semantic corridor (SSC) to model the constraints posed by complex driving environments in a unified way. Based on the SSC, a safe and smooth trajectory is optimized, complying with the decision provided by the behavior planner. We validate our planning system in both simulations and real-world dense traffic, and the experimental results show that our EPSILON achieves human-like driving behaviors in highly interactive traffic flow smoothly and safely without being overconservative compared to the existing planning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈的醉薇完成签到,获得积分10
刚刚
min发布了新的文献求助10
刚刚
无所谓发布了新的文献求助10
1秒前
JerryZ发布了新的文献求助10
2秒前
domingo发布了新的文献求助10
2秒前
jiangmj1990完成签到,获得积分10
3秒前
笛卡尔完成签到,获得积分10
4秒前
小垃圾完成签到 ,获得积分10
6秒前
扭扭车完成签到,获得积分10
7秒前
jiangmj1990发布了新的文献求助10
7秒前
7秒前
毕业比耶完成签到,获得积分20
8秒前
华仔应助牙牙采纳,获得10
10秒前
11秒前
科研通AI5应助zhaoyichun采纳,获得10
12秒前
脑洞疼应助JerryZ采纳,获得10
12秒前
大模型应助陈佳祥采纳,获得10
12秒前
yangxiaoxu完成签到 ,获得积分10
13秒前
魁梧的小霸王完成签到,获得积分10
14秒前
14秒前
AaronDP完成签到,获得积分10
16秒前
18秒前
科研通AI5应助Emma采纳,获得10
19秒前
20秒前
20秒前
彭于晏应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
王子安应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
ED应助科研通管家采纳,获得10
21秒前
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993587
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265206
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712