EPSILON: An Efficient Planning System for Automated Vehicles in Highly Interactive Environments

部分可观测马尔可夫决策过程 计算机科学 马尔可夫决策过程 运动规划 规划师 自动计划和调度 过程(计算) 弹道 钥匙(锁) 人工智能 空格(标点符号) 马尔可夫过程 马尔可夫链 模拟 机器人 机器学习 马尔可夫模型 统计 操作系统 物理 计算机安全 数学 天文
作者
Wenchao Ding,Lu Zhang,Jing Chen,Shaojie Shen
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:38 (2): 1118-1138 被引量:44
标识
DOI:10.1109/tro.2021.3104254
摘要

In this article, we present an efficient planning system for automated vehicles in highly interactive environments (EPSILON). EPSILON is an efficient interaction-aware planning system for automated driving, and is extensively validated in both simulation and real-world dense city traffic. It follows a hierarchical structure with an interactive behavior planning layer and an optimization-based motion planning layer. The behavior planning is formulated from a partially observable Markov decision process (POMDP), but is much more efficient than naively applying a POMDP to the decision-making problem. The key to efficiency is guided branching in both the action space and observation space, which decomposes the original problem into a limited number of closed-loop policy evaluations. Moreover, we introduce a new driver model with a safety mechanism to overcome the risk induced by the potential imperfectness of prior knowledge. For motion planning, we employ a spatio-temporal semantic corridor (SSC) to model the constraints posed by complex driving environments in a unified way. Based on the SSC, a safe and smooth trajectory is optimized, complying with the decision provided by the behavior planner. We validate our planning system in both simulations and real-world dense traffic, and the experimental results show that our EPSILON achieves human-like driving behaviors in highly interactive traffic flow smoothly and safely without being overconservative compared to the existing planning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糕米发布了新的文献求助10
2秒前
时尚初柳完成签到,获得积分10
2秒前
轻松的茗茗完成签到,获得积分10
3秒前
冷静白亦发布了新的文献求助10
5秒前
jackie able发布了新的文献求助10
5秒前
深情安青应助科研通管家采纳,获得10
6秒前
月月完成签到,获得积分10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
过冷风应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
tang应助科研通管家采纳,获得50
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
兔兔兔应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
betty完成签到,获得积分10
7秒前
tang应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
英姑应助Hayden_peng采纳,获得10
9秒前
充电宝应助fengzhong采纳,获得10
9秒前
10秒前
开朗渊思发布了新的文献求助10
12秒前
山野完成签到 ,获得积分10
12秒前
安眠完成签到 ,获得积分10
13秒前
14秒前
倔驴发布了新的文献求助10
15秒前
eaglefish发布了新的文献求助10
15秒前
大个应助冷静白亦采纳,获得10
16秒前
XiangJi完成签到,获得积分20
17秒前
归海芳发布了新的文献求助10
17秒前
坚定的中蓝完成签到,获得积分10
17秒前
噗噗完成签到,获得积分10
19秒前
19秒前
无际的星空下完成签到,获得积分10
20秒前
21秒前
ewmmel完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545926
求助须知:如何正确求助?哪些是违规求助? 3977396
关于积分的说明 12316211
捐赠科研通 3645739
什么是DOI,文献DOI怎么找? 2007732
邀请新用户注册赠送积分活动 1043308
科研通“疑难数据库(出版商)”最低求助积分说明 932103