Structural damage identification under nonstationary excitations through recurrence plot and multi-label convolutional neural network

鉴定(生物学) 卷积神经网络 计算机科学 模式识别(心理学) 人工智能 自相关 算法 概率逻辑 数学 统计 植物 生物
作者
Dan Li,Zhenlong Liang,Wei‐Xin Ren,Dong Yang,Shidong Wang,Shulin Xiang
出处
期刊:Measurement [Elsevier BV]
卷期号:186: 110101-110101 被引量:29
标识
DOI:10.1016/j.measurement.2021.110101
摘要

• A method is proposed for damage identification under nonstationary excitations. • UARDM is a new type of RP that represents dynamic characteristics of the structure. • Multi-label CNN model decouples the identification of damage locations and levels. • The proposed method performs with higher identification accuracy and efficiency. Civil engineering structures inevitably suffer from nonstationary ambient excitations in practice, which make conventional damage identification methods relying on the stationary assumption ineffective. This study presents a novel method based on unthresholded assembled recurrence distance matrix (UARDM) and multi-label convolutional neural network (CNN) for structural damage identification under nonstationary excitations. UARDM is a new type of recurrence plot (RP) that is proposed to integrate information of multiple channels and dispense with the artificially selected threshold. It reveals intrinsic dynamic characteristics of the structure using its vibration responses from the perspective of global probabilistic autocorrelation. After that, CNN is applied to automatically extract damage-sensitive features of UARDMs and classify them for the identification of damage cases. Instead of the traditional single-label CNN model that labels each combination of damage location and level as an objective class, the multi-label CNN model is developed to decouple the identification processes of damage locations and levels in order to improve the identification accuracy and computational efficiency. It evaluates the damage level at each location through a sub-branch with an independent set of labels and detects the damage locations by fusing information of all the sub-branches. A comprehensive comparison was conducted among single-label and multi-label CNN models input with raw accelerations, unthresholded multivariate recurrence plots (UMRPs), unthresholded recurrence plots (URPs) and UARDMs through numerical simulation and experimental test. It was demonstrated that the proposed structural damage identification method based on UARDM and multi-label CNN was able to identify multiple damage locations and levels under various stationary and nonstationary excitations with higher accuracy, efficiency and robustness, and even able to detect multiple-damage cases that were not measured beforehand and involved in the training dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
细心青烟完成签到,获得积分20
1秒前
会走路的番茄完成签到,获得积分10
1秒前
xx完成签到,获得积分10
2秒前
2秒前
科研狂徒完成签到,获得积分10
2秒前
z1z1z完成签到,获得积分10
2秒前
2秒前
木子弓长发布了新的文献求助10
2秒前
3秒前
3秒前
roser完成签到,获得积分10
3秒前
4秒前
细心青烟发布了新的文献求助20
4秒前
5秒前
勤恳觅珍发布了新的文献求助10
6秒前
6秒前
浮熙发布了新的文献求助10
6秒前
he完成签到,获得积分10
6秒前
swy发布了新的文献求助10
7秒前
7秒前
7秒前
典雅碧空应助小涛采纳,获得10
7秒前
牛马发布了新的文献求助10
7秒前
xzf1996完成签到,获得积分10
8秒前
蛋挞发布了新的文献求助10
8秒前
what发布了新的文献求助10
8秒前
刘闪闪发布了新的文献求助10
9秒前
请叫我风吹麦浪应助Hohai采纳,获得30
9秒前
9秒前
zhi应助文件撤销了驳回
9秒前
斯文败类应助勤奋的烨霖采纳,获得10
9秒前
研友_n0DWDn完成签到,获得积分10
9秒前
Stefani完成签到,获得积分10
9秒前
机智的诗兰完成签到,获得积分10
10秒前
10秒前
华仔应助swy采纳,获得10
11秒前
科研通AI2S应助木子弓长采纳,获得10
11秒前
香蕉觅云应助勤恳觅珍采纳,获得10
12秒前
Albertxkcj发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836