Structural damage identification under nonstationary excitations through recurrence plot and multi-label convolutional neural network

鉴定(生物学) 卷积神经网络 计算机科学 模式识别(心理学) 人工智能 自相关 算法 概率逻辑 数学 统计 植物 生物
作者
Dan Li,Zhenlong Liang,Wei‐Xin Ren,Dong Yang,Shidong Wang,Shulin Xiang
出处
期刊:Measurement [Elsevier]
卷期号:186: 110101-110101 被引量:29
标识
DOI:10.1016/j.measurement.2021.110101
摘要

• A method is proposed for damage identification under nonstationary excitations. • UARDM is a new type of RP that represents dynamic characteristics of the structure. • Multi-label CNN model decouples the identification of damage locations and levels. • The proposed method performs with higher identification accuracy and efficiency. Civil engineering structures inevitably suffer from nonstationary ambient excitations in practice, which make conventional damage identification methods relying on the stationary assumption ineffective. This study presents a novel method based on unthresholded assembled recurrence distance matrix (UARDM) and multi-label convolutional neural network (CNN) for structural damage identification under nonstationary excitations. UARDM is a new type of recurrence plot (RP) that is proposed to integrate information of multiple channels and dispense with the artificially selected threshold. It reveals intrinsic dynamic characteristics of the structure using its vibration responses from the perspective of global probabilistic autocorrelation. After that, CNN is applied to automatically extract damage-sensitive features of UARDMs and classify them for the identification of damage cases. Instead of the traditional single-label CNN model that labels each combination of damage location and level as an objective class, the multi-label CNN model is developed to decouple the identification processes of damage locations and levels in order to improve the identification accuracy and computational efficiency. It evaluates the damage level at each location through a sub-branch with an independent set of labels and detects the damage locations by fusing information of all the sub-branches. A comprehensive comparison was conducted among single-label and multi-label CNN models input with raw accelerations, unthresholded multivariate recurrence plots (UMRPs), unthresholded recurrence plots (URPs) and UARDMs through numerical simulation and experimental test. It was demonstrated that the proposed structural damage identification method based on UARDM and multi-label CNN was able to identify multiple damage locations and levels under various stationary and nonstationary excitations with higher accuracy, efficiency and robustness, and even able to detect multiple-damage cases that were not measured beforehand and involved in the training dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
smart发布了新的文献求助20
3秒前
152522发布了新的文献求助10
4秒前
4秒前
呆萌幼晴发布了新的文献求助10
5秒前
冷冰凝爱与梦脆霜完成签到,获得积分10
6秒前
黎小乐子发布了新的文献求助10
6秒前
7秒前
无相完成签到 ,获得积分10
8秒前
鱼4185完成签到 ,获得积分10
9秒前
脑洞疼应助152522采纳,获得10
10秒前
脑洞疼应助黎小乐子采纳,获得10
10秒前
逗号发布了新的文献求助10
13秒前
小赵很努力完成签到 ,获得积分10
14秒前
天真的迎天完成签到,获得积分10
14秒前
看双双完成签到,获得积分10
22秒前
Frank发布了新的文献求助10
22秒前
WW完成签到,获得积分10
23秒前
24秒前
Orange应助xshlzwyyh采纳,获得10
26秒前
贪玩语蓉发布了新的文献求助10
28秒前
搜集达人应助smart采纳,获得10
29秒前
30秒前
31秒前
qizhi完成签到,获得积分10
35秒前
黎小静发布了新的文献求助10
36秒前
37秒前
Ajigul完成签到,获得积分10
37秒前
38秒前
39秒前
小牙医完成签到,获得积分10
40秒前
orixero应助光亮的世界采纳,获得10
42秒前
DJ完成签到,获得积分10
43秒前
44秒前
xiaozhejia发布了新的文献求助10
45秒前
和平使命应助TL采纳,获得10
45秒前
gogogo发布了新的文献求助10
47秒前
50秒前
冬虫夏草完成签到,获得积分10
50秒前
52秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352352
求助须知:如何正确求助?哪些是违规求助? 2977561
关于积分的说明 8680125
捐赠科研通 2658516
什么是DOI,文献DOI怎么找? 1455859
科研通“疑难数据库(出版商)”最低求助积分说明 674121
邀请新用户注册赠送积分活动 664666