亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structural damage identification under nonstationary excitations through recurrence plot and multi-label convolutional neural network

鉴定(生物学) 卷积神经网络 计算机科学 模式识别(心理学) 人工智能 自相关 算法 概率逻辑 数学 统计 植物 生物
作者
Dan Li,Zhenlong Liang,Wei‐Xin Ren,Dong Yang,Shidong Wang,Shulin Xiang
出处
期刊:Measurement [Elsevier BV]
卷期号:186: 110101-110101 被引量:29
标识
DOI:10.1016/j.measurement.2021.110101
摘要

• A method is proposed for damage identification under nonstationary excitations. • UARDM is a new type of RP that represents dynamic characteristics of the structure. • Multi-label CNN model decouples the identification of damage locations and levels. • The proposed method performs with higher identification accuracy and efficiency. Civil engineering structures inevitably suffer from nonstationary ambient excitations in practice, which make conventional damage identification methods relying on the stationary assumption ineffective. This study presents a novel method based on unthresholded assembled recurrence distance matrix (UARDM) and multi-label convolutional neural network (CNN) for structural damage identification under nonstationary excitations. UARDM is a new type of recurrence plot (RP) that is proposed to integrate information of multiple channels and dispense with the artificially selected threshold. It reveals intrinsic dynamic characteristics of the structure using its vibration responses from the perspective of global probabilistic autocorrelation. After that, CNN is applied to automatically extract damage-sensitive features of UARDMs and classify them for the identification of damage cases. Instead of the traditional single-label CNN model that labels each combination of damage location and level as an objective class, the multi-label CNN model is developed to decouple the identification processes of damage locations and levels in order to improve the identification accuracy and computational efficiency. It evaluates the damage level at each location through a sub-branch with an independent set of labels and detects the damage locations by fusing information of all the sub-branches. A comprehensive comparison was conducted among single-label and multi-label CNN models input with raw accelerations, unthresholded multivariate recurrence plots (UMRPs), unthresholded recurrence plots (URPs) and UARDMs through numerical simulation and experimental test. It was demonstrated that the proposed structural damage identification method based on UARDM and multi-label CNN was able to identify multiple damage locations and levels under various stationary and nonstationary excitations with higher accuracy, efficiency and robustness, and even able to detect multiple-damage cases that were not measured beforehand and involved in the training dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GYQ完成签到,获得积分10
刚刚
淡定的雁玉完成签到 ,获得积分10
2秒前
29秒前
FashionBoy应助兴奋的嘉懿采纳,获得10
49秒前
53秒前
祖之微笑发布了新的文献求助10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
祖之微笑发布了新的文献求助10
2分钟前
简因完成签到 ,获得积分10
2分钟前
英姑应助苹果果汁采纳,获得30
2分钟前
kaka完成签到,获得积分10
2分钟前
2分钟前
Jason发布了新的文献求助10
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小乘号子发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
子平完成签到 ,获得积分0
3分钟前
科研通AI5应助哲别采纳,获得10
3分钟前
gszy1975完成签到,获得积分10
3分钟前
小乘号子发布了新的文献求助10
4分钟前
4分钟前
Akim应助小乘号子采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
yi完成签到,获得积分10
4分钟前
英俊的铭应助执着的草丛采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
slayers完成签到 ,获得积分20
5分钟前
Billy完成签到,获得积分0
5分钟前
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520756
关于积分的说明 11204771
捐赠科研通 3257528
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629