氧化应激
甲藻
超氧化物歧化酶
脂质过氧化
活性氧
细胞外
谷胱甘肽
丙二醛
化学
叶绿素
溶血素
生物化学
生物
食品科学
微生物学
植物
酶
基因
毒力
作者
Suchun Wang,Feifei Liu,Tianyuan Huang,Jin-Lin Fan,Zhi-yin Gao,Guangzhou Liu
出处
期刊:Nanomaterials
[MDPI AG]
日期:2021-09-22
卷期号:11 (10): 2471-2471
被引量:13
摘要
Recently, the effects of nanoplastics (NPs) on aquatic organisms have attracted much attention; however, research on the toxicity of NPs to microalgae has been insufficient. In the present study, the effects of polystyrene nanoplastics (nano-PS, 50 nm) on growth inhibition, chlorophyll content, oxidative stress, and algal toxin production of the marine toxigenic dinoflagellate Amphidinium carterae Hulburt were investigated. Chlorophyll synthesis was promoted by nano-PS on day 2 but was inhibited on day 4; high concentrations of nano-PS (≥50 mg/L) significantly inhibited the growth of A. carterae. Moreover, despite the combined effect of superoxide dismutase (SOD) and glutathione (GSH), high reactive oxygen species (ROS) level and malondialdehyde (MDA) content were still induced by nano-PS (≥50 mg/L), indicating severe lipid peroxidation. In addition, the contents of extracellular and intracellular hemolytic toxins in nano-PS groups were significantly higher than those in control groups on days 2 and 8, except that those of extracellular hemolytic toxins in the 100 mg/L nano-PS group decreased on day 8 because of severe adsorption of hemolytic toxins to the nano-PS. Hence, the effects of nano-PS on A. carterae are closely linked to nano-PS concentration and surface properties and exposure time. These findings provide a deep understanding of the complex effects of NPs on toxigenic microalgae and present valuable data for assessing their environmental risks.
科研通智能强力驱动
Strongly Powered by AbleSci AI