Engineering Single Atom Catalysts to Tune Properties for Electrochemical Reduction and Evolution Reactions

催化作用 材料科学 电化学 纳米技术 Atom(片上系统) 析氧 表面工程 电催化剂 分解水 化学工程 化学 物理化学 电极 有机化学 计算机科学 光催化 工程类 嵌入式系统
作者
Kakali Maiti,Sandip Maiti,Matthew T. Curnan,Hyung Jun Kim,Jeong Woo Han
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:11 (38) 被引量:67
标识
DOI:10.1002/aenm.202101670
摘要

Abstract Electrocatalysis is important to the conversion and storage of renewable energy resources, including fuel cells, water electrolysers, and batteries. Engineering metal‐based nano‐architectures and their atomic‐scale surfaces is a promising approach for designing electrocatalysts. Single metal atom interactions with substrates and reaction environments crucially modulate the surface electronic properties of active metal centers, yielding controllable scaling relationships and transitions between different reaction mechanisms that improve catalytic activity. Single‐atom catalysts (SACs) allow activity and selectivity tuning while maintaining relatively consistent morphologies. SACs have well‐defined configurations and active centers within homogeneous single‐atom dispersions, producing exceptional selectivities, activities, and stabilities. Furthermore, SACs with high per‐atom utilization efficiencies, well‐controlled substrate compositions, and engineered surface structures develop single atom active sites for molecular reactions, enhancing mass activities. Recent developments in different metal‐based SAC nanostructures are discussed to explain their remarkable bi‐functional electrocatalytic activities and high mechanical flexibility, especially in the oxygen evolution reaction, oxygen reduction reaction, carbon dioxide reduction reaction, hydrogen evolution reaction, and in battery applications. Existing barriers to and future insights into improving SAC performance are addressed. This study develops practical and fundamental insights on single atom electrocatalysts directed towards tuning their electrocatalytic activities and enhancing their stabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助见青山采纳,获得10
刚刚
ding应助随机采纳,获得10
刚刚
CLAIR发布了新的文献求助10
刚刚
Eve完成签到 ,获得积分10
1秒前
JJ发布了新的文献求助10
1秒前
FashionBoy应助累鼠的牛马采纳,获得10
3秒前
情怀应助123采纳,获得10
4秒前
ding发布了新的文献求助10
4秒前
5秒前
7秒前
CLAIR完成签到,获得积分10
7秒前
8秒前
现代的十八完成签到,获得积分10
8秒前
8秒前
所所应助weirb采纳,获得30
10秒前
sin完成签到,获得积分20
10秒前
丘比特应助张弘采纳,获得10
11秒前
1911123434发布了新的文献求助10
11秒前
琳琳发布了新的文献求助10
11秒前
guowu完成签到 ,获得积分10
11秒前
12秒前
赘婿应助545采纳,获得10
12秒前
12秒前
12秒前
随机完成签到,获得积分10
14秒前
zz完成签到,获得积分10
14秒前
z706发布了新的文献求助10
14秒前
14秒前
星辰大海应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
16秒前
碎碎寒完成签到,获得积分10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得30
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
16秒前
耍酷代柔发布了新的文献求助10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442