Deriving customer preferences for hotels based on aspect-level sentiment analysis of online reviews

情绪分析 计算机科学 广告 营销 业务 人工智能
作者
Jing Zhang,Xingchen Lu,Dian Liu
出处
期刊:Electronic Commerce Research and Applications [Elsevier BV]
卷期号:49: 101094-101094 被引量:42
标识
DOI:10.1016/j.elerap.2021.101094
摘要

An increasing number of travelers like to share their experience and feelings about hotel stays through social media, generating a sheer volume of online hotel reviews. The user-generated comments contain their preferences for different aspects of hotels, which are helpful for hoteliers to improve hotels’ services. The key of deriving customer preferences from online hotel reviews is to identify fine-grained sentiment towards hotel attributes. However, the existing fine-grained sentiment analysis approaches cannot address the implicit aspect-level terms extraction very well, which is necessary to deal with the common situation that some aspects are omitted in the online reviews. To better understand customer preferences, we propose an unsupervised approach for aspect-level sentiment analysis with the implicit hotel attributes into consideration by integrating word embedding, co-occurrence and dependency parsing. A method based on overall sentiment values of hotel attributes is used to measure the customer preferences to support the hotel services analysis. Finally, online hotel reviews crawled from Ctrip.com are used to verify the proposed approach, and the results show that the hybrid approach outperforms the individual included techniques with respect to the sentiment classification performance. The analysis of customer preference for Dalian Bayshore Hotel suggests that the hotel’s facility should be upgraded urgently, and different types of customers pay different attention to hotel attributes, such as price, hygiene, and location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
春来完成签到,获得积分20
刚刚
2秒前
在水一方应助Quentin9998采纳,获得10
2秒前
3秒前
33发布了新的文献求助10
3秒前
3秒前
6秒前
7秒前
搜集达人应助33采纳,获得10
7秒前
Alina完成签到 ,获得积分10
9秒前
奋斗清炎发布了新的文献求助10
9秒前
Atlantic发布了新的文献求助10
9秒前
10秒前
10秒前
12秒前
追寻雨发布了新的文献求助10
12秒前
xiongdi521发布了新的文献求助10
12秒前
14秒前
14秒前
xly发布了新的文献求助10
16秒前
阚曦发布了新的文献求助10
17秒前
望断椿岁发布了新的文献求助20
17秒前
18秒前
18秒前
Bear完成签到 ,获得积分10
20秒前
QF发布了新的文献求助10
21秒前
温柔寒梅完成签到 ,获得积分10
22秒前
追寻雨完成签到,获得积分10
22秒前
23秒前
WWshu应助豆豆采纳,获得10
25秒前
25秒前
共享精神应助spc采纳,获得10
25秒前
叶子完成签到,获得积分10
26秒前
核桃应助secret采纳,获得10
26秒前
等待的若云完成签到,获得积分10
27秒前
归尘发布了新的文献求助10
27秒前
27秒前
27秒前
28秒前
希捷方向发布了新的文献求助10
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371