已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deriving customer preferences for hotels based on aspect-level sentiment analysis of online reviews

情绪分析 计算机科学 广告 营销 业务 人工智能
作者
Jing Zhang,Xingchen Lu,Dian Liu
出处
期刊:Electronic Commerce Research and Applications [Elsevier]
卷期号:49: 101094-101094 被引量:42
标识
DOI:10.1016/j.elerap.2021.101094
摘要

An increasing number of travelers like to share their experience and feelings about hotel stays through social media, generating a sheer volume of online hotel reviews. The user-generated comments contain their preferences for different aspects of hotels, which are helpful for hoteliers to improve hotels’ services. The key of deriving customer preferences from online hotel reviews is to identify fine-grained sentiment towards hotel attributes. However, the existing fine-grained sentiment analysis approaches cannot address the implicit aspect-level terms extraction very well, which is necessary to deal with the common situation that some aspects are omitted in the online reviews. To better understand customer preferences, we propose an unsupervised approach for aspect-level sentiment analysis with the implicit hotel attributes into consideration by integrating word embedding, co-occurrence and dependency parsing. A method based on overall sentiment values of hotel attributes is used to measure the customer preferences to support the hotel services analysis. Finally, online hotel reviews crawled from Ctrip.com are used to verify the proposed approach, and the results show that the hybrid approach outperforms the individual included techniques with respect to the sentiment classification performance. The analysis of customer preference for Dalian Bayshore Hotel suggests that the hotel’s facility should be upgraded urgently, and different types of customers pay different attention to hotel attributes, such as price, hygiene, and location.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助上官采纳,获得10
刚刚
楚慈楚发布了新的文献求助10
刚刚
CipherSage应助尚尚采纳,获得10
2秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
无极微光应助Jun采纳,获得20
5秒前
共享精神应助Walden采纳,获得10
6秒前
戚琪祁完成签到,获得积分10
8秒前
10秒前
酷波er应助Jesper采纳,获得10
12秒前
12秒前
高高冰旋完成签到,获得积分10
12秒前
14秒前
yyc完成签到,获得积分10
14秒前
ceeeeeeeeeeee完成签到,获得积分10
15秒前
舒服的鱼完成签到,获得积分10
15秒前
网络复杂完成签到,获得积分20
16秒前
番茄炒蛋发布了新的文献求助10
16秒前
16秒前
ilovelr关注了科研通微信公众号
17秒前
yhjjj完成签到,获得积分20
17秒前
17秒前
高高冰旋发布了新的文献求助10
17秒前
神龙尊者完成签到,获得积分20
18秒前
科研通AI6应助寇博翔采纳,获得10
19秒前
李健应助momo采纳,获得10
19秒前
搜集达人应助无奈灭绝采纳,获得10
20秒前
yunshui发布了新的文献求助10
20秒前
20秒前
大个应助林与多一半采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558