清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel framework to predict water turbidity using Bayesian modeling

浊度 环境科学 水生生态系统 贝叶斯概率 水文学(农业) 水资源 计算机科学 生态学 人工智能 工程类 岩土工程 生物
作者
Jiacong Huang,Rui Qian,Junfeng Gao,Haijian Bing,Qi Huang,Lingyan Qi,Song Song,Jiafang Huang
出处
期刊:Water Research [Elsevier BV]
卷期号:202: 117406-117406 被引量:15
标识
DOI:10.1016/j.watres.2021.117406
摘要

High water turbidity in aquatic ecosystems is a global challenge due to its harmful impacts. A cost-effective manner to rapidly and accurately measure water turbidity is thus of particular useful in water management with limited resources. This study developed a novel framework aiming to predict water turbidity in various aquatic ecosystems. The framework predicted water turbidity and quantified the uncertainty of the prediction through Bayesian modeling. To improve model performance, a model-update method was implemented in the framework to update the model structure and parameters once more measured data were available. 120 paired records (an image from smartphone and a measured water turbidity value by standard turbidimeters for each record) were collected from rivers, lakes and ponds across China to evaluate the performance of the developed framework. Our cross-validation results revealed a well prediction of water turbidity with Nash-Sutcliffe efficiency (NS) >0.87 (p<0.001) during the training period and NS>0.73 (p<0.001) during the validation period. The model-update method (in case of more measured data) for the developed Bayesian models in the framework resulted in a decreasing trend of model uncertainty and a stable mode fit. This study demonstrated a high value of the Bayesian-based framework in predicting water turbidity in a robust and easy manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糟糕的翅膀完成签到,获得积分10
29秒前
1分钟前
平凡之路发布了新的文献求助10
1分钟前
Ma完成签到,获得积分10
2分钟前
激动的似狮完成签到,获得积分10
3分钟前
fabius0351完成签到 ,获得积分10
3分钟前
linglingling完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
细心书包完成签到,获得积分10
6分钟前
砺行应助科研通管家采纳,获得10
6分钟前
白天亮完成签到,获得积分10
8分钟前
iman完成签到,获得积分10
8分钟前
8分钟前
makeincraze发布了新的文献求助10
8分钟前
sky驳回了核桃应助
9分钟前
紧张的书文完成签到 ,获得积分10
9分钟前
闪闪的梦槐完成签到 ,获得积分10
10分钟前
林利芳完成签到 ,获得积分0
10分钟前
砺行应助科研通管家采纳,获得150
10分钟前
量子星尘发布了新的文献求助10
11分钟前
酷酷海豚完成签到,获得积分10
11分钟前
韶绍完成签到 ,获得积分10
12分钟前
Hey完成签到 ,获得积分10
13分钟前
13分钟前
李爱国应助任性沛槐采纳,获得10
14分钟前
14分钟前
任性沛槐发布了新的文献求助10
14分钟前
科研通AI5应助科研通管家采纳,获得10
14分钟前
14分钟前
3655001Liu发布了新的文献求助10
15分钟前
silsotiscolor完成签到,获得积分10
15分钟前
Oculus完成签到 ,获得积分10
15分钟前
guan完成签到,获得积分10
16分钟前
脑洞疼应助maclogos采纳,获得10
16分钟前
乐乐应助zhangxiaopan采纳,获得10
17分钟前
FuRui发布了新的文献求助10
17分钟前
18分钟前
maclogos发布了新的文献求助10
18分钟前
18分钟前
zhangxiaopan发布了新的文献求助10
18分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5138005
求助须知:如何正确求助?哪些是违规求助? 4337511
关于积分的说明 13511646
捐赠科研通 4176375
什么是DOI,文献DOI怎么找? 2290010
邀请新用户注册赠送积分活动 1290526
关于科研通互助平台的介绍 1232455