亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel framework to predict water turbidity using Bayesian modeling

浊度 环境科学 水生生态系统 贝叶斯概率 水文学(农业) 水资源 计算机科学 生态学 人工智能 工程类 生物 岩土工程
作者
Jiacong Huang,Rui Qian,Junfeng Gao,Haijian Bing,Qi Huang,Lingyan Qi,Song Song,Jiafang Huang
出处
期刊:Water Research [Elsevier BV]
卷期号:202: 117406-117406 被引量:15
标识
DOI:10.1016/j.watres.2021.117406
摘要

High water turbidity in aquatic ecosystems is a global challenge due to its harmful impacts. A cost-effective manner to rapidly and accurately measure water turbidity is thus of particular useful in water management with limited resources. This study developed a novel framework aiming to predict water turbidity in various aquatic ecosystems. The framework predicted water turbidity and quantified the uncertainty of the prediction through Bayesian modeling. To improve model performance, a model-update method was implemented in the framework to update the model structure and parameters once more measured data were available. 120 paired records (an image from smartphone and a measured water turbidity value by standard turbidimeters for each record) were collected from rivers, lakes and ponds across China to evaluate the performance of the developed framework. Our cross-validation results revealed a well prediction of water turbidity with Nash-Sutcliffe efficiency (NS) >0.87 (p<0.001) during the training period and NS>0.73 (p<0.001) during the validation period. The model-update method (in case of more measured data) for the developed Bayesian models in the framework resulted in a decreasing trend of model uncertainty and a stable mode fit. This study demonstrated a high value of the Bayesian-based framework in predicting water turbidity in a robust and easy manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
9秒前
30秒前
April_5发布了新的文献求助10
33秒前
41秒前
充电宝应助April_5采纳,获得10
41秒前
小哈完成签到 ,获得积分10
46秒前
科目三应助超级飞侠采纳,获得10
51秒前
馆长举报zhizhi2021求助涉嫌违规
59秒前
Otter完成签到,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
落落洛栖完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
超级飞侠发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
石石夏发布了新的文献求助10
2分钟前
2分钟前
香蕉觅云应助石石夏采纳,获得10
2分钟前
xiaowang完成签到 ,获得积分10
3分钟前
FashionBoy应助超级飞侠采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI5应助繁觅采纳,获得10
3分钟前
4分钟前
4分钟前
繁觅发布了新的文献求助10
4分钟前
4分钟前
sfwrbh完成签到,获得积分10
4分钟前
芝士咖喱包完成签到,获得积分20
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568645
求助须知:如何正确求助?哪些是违规求助? 3991187
关于积分的说明 12355456
捐赠科研通 3663199
什么是DOI,文献DOI怎么找? 2018739
邀请新用户注册赠送积分活动 1053170
科研通“疑难数据库(出版商)”最低求助积分说明 940756