A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis

支持向量机 人工智能 模式识别(心理学) 特征选择 脑电图 计算机科学 重性抑郁障碍 分类器(UML) 小波 机器学习 特征提取 心理学 精神科 认知
作者
Reza Akbari Movahed,Gila Pirzad Jahromi,Shima Shahyad,Gholam Hossein Meftahi
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:358: 109209-109209 被引量:64
标识
DOI:10.1016/j.jneumeth.2021.109209
摘要

Major depressive disorder (MDD) is a prevalent mental illness that is diagnosed through questionnaire-based approaches; however, these methods may not lead to an accurate diagnosis. In this regard, many studies have focused on using electroencephalogram (EEG) signals and machine learning techniques to diagnose MDD. This paper proposes a machine learning framework for MDD diagnosis, which uses different types of EEG-derived features. The features are extracted using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis methods. The sequential backward feature selection (SBFS) algorithm is also employed to perform feature selection. Various classifier models are utilized to select the best one for the proposed framework. The proposed method is validated with a public EEG dataset, including the EEG data of 34 MDD patients and 30 healthy subjects. The evaluation of the proposed framework is conducted using 10-fold cross-validation, providing the metrics such as accuracy (AC), sensitivity (SE), specificity (SP), F1-score (F1), and false discovery rate (FDR). The best performance of the proposed method has provided an average AC of 99%, SE of 98.4%, SP of 99.6%, F1 of 98.9%, and FDR of 0.4% using the support vector machine with RBF kernel (RBFSVM) classifier. The obtained results demonstrate that the proposed method outperforms other approaches for MDD classification based on EEG signals. According to the obtained results, a highly accurate MDD diagnosis would be provided using the proposed method, while it can be utilized to develop a computer-aided diagnosis (CAD) tool for clinical purposes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助lim采纳,获得10
刚刚
刚刚
QLLW发布了新的文献求助10
1秒前
2秒前
HERACLE完成签到 ,获得积分20
2秒前
漏漏漏发布了新的文献求助10
2秒前
wgqiang完成签到,获得积分10
2秒前
ding应助11采纳,获得10
3秒前
4秒前
张兰兰发布了新的文献求助20
5秒前
ddd发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
图图发布了新的文献求助10
8秒前
科研通AI6应助姚盈盈采纳,获得10
9秒前
starnight完成签到,获得积分10
9秒前
10秒前
jw完成签到,获得积分10
10秒前
完美世界应助Paradox采纳,获得10
12秒前
白羊完成签到,获得积分10
12秒前
QLLW发布了新的文献求助10
14秒前
李爱国应助漏漏漏采纳,获得30
15秒前
小透明发布了新的文献求助10
17秒前
17秒前
17秒前
凯瑞发布了新的文献求助10
17秒前
like1994发布了新的文献求助10
18秒前
爆米花应助lengchitu采纳,获得10
18秒前
珊明治完成签到,获得积分10
18秒前
科研通AI6应助LiuYingkang采纳,获得10
20秒前
ghroth完成签到,获得积分10
21秒前
完美世界应助繁荣的觅儿采纳,获得10
21秒前
Paradox发布了新的文献求助10
22秒前
22秒前
1816013153发布了新的文献求助10
22秒前
GCXH发布了新的文献求助10
23秒前
妮妮完成签到,获得积分10
23秒前
源缘完成签到 ,获得积分10
25秒前
科研通AI2S应助小谢采纳,获得10
25秒前
27秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583326
求助须知:如何正确求助?哪些是违规求助? 4667155
关于积分的说明 14765758
捐赠科研通 4609337
什么是DOI,文献DOI怎么找? 2529123
邀请新用户注册赠送积分活动 1498393
关于科研通互助平台的介绍 1467043