A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis

支持向量机 人工智能 模式识别(心理学) 特征选择 脑电图 计算机科学 重性抑郁障碍 分类器(UML) 小波 机器学习 特征提取 心理学 精神科 认知
作者
Reza Akbari Movahed,Gila Pirzad Jahromi,Shima Shahyad,Gholam Hossein Meftahi
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:358: 109209-109209 被引量:64
标识
DOI:10.1016/j.jneumeth.2021.109209
摘要

Major depressive disorder (MDD) is a prevalent mental illness that is diagnosed through questionnaire-based approaches; however, these methods may not lead to an accurate diagnosis. In this regard, many studies have focused on using electroencephalogram (EEG) signals and machine learning techniques to diagnose MDD. This paper proposes a machine learning framework for MDD diagnosis, which uses different types of EEG-derived features. The features are extracted using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis methods. The sequential backward feature selection (SBFS) algorithm is also employed to perform feature selection. Various classifier models are utilized to select the best one for the proposed framework. The proposed method is validated with a public EEG dataset, including the EEG data of 34 MDD patients and 30 healthy subjects. The evaluation of the proposed framework is conducted using 10-fold cross-validation, providing the metrics such as accuracy (AC), sensitivity (SE), specificity (SP), F1-score (F1), and false discovery rate (FDR). The best performance of the proposed method has provided an average AC of 99%, SE of 98.4%, SP of 99.6%, F1 of 98.9%, and FDR of 0.4% using the support vector machine with RBF kernel (RBFSVM) classifier. The obtained results demonstrate that the proposed method outperforms other approaches for MDD classification based on EEG signals. According to the obtained results, a highly accurate MDD diagnosis would be provided using the proposed method, while it can be utilized to develop a computer-aided diagnosis (CAD) tool for clinical purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助义气代梅采纳,获得10
1秒前
之乎者也完成签到,获得积分10
1秒前
花海发布了新的文献求助10
1秒前
小二郎应助bhbmn采纳,获得30
2秒前
2秒前
咖褐发布了新的文献求助10
2秒前
gwt发布了新的文献求助10
3秒前
洒脱完成签到 ,获得积分10
3秒前
吞金发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
湘崽丫完成签到 ,获得积分10
5秒前
viper3完成签到,获得积分10
5秒前
6秒前
乐乐应助xyyl采纳,获得10
7秒前
7秒前
8秒前
9秒前
9秒前
Dream发布了新的文献求助10
9秒前
sunbai发布了新的文献求助10
9秒前
equinox发布了新的文献求助10
9秒前
10秒前
10秒前
葛稀驳回了Akim应助
10秒前
11秒前
11秒前
852应助咖褐采纳,获得10
11秒前
11秒前
12秒前
12秒前
张111发布了新的文献求助10
12秒前
hbhbj发布了新的文献求助10
12秒前
TearMarks发布了新的文献求助10
13秒前
所所应助LYZ采纳,获得10
13秒前
吞金完成签到,获得积分10
13秒前
lin发布了新的文献求助10
13秒前
科研通AI6应助小笨嘴采纳,获得10
14秒前
zxf完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058