A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis

支持向量机 人工智能 模式识别(心理学) 特征选择 脑电图 计算机科学 重性抑郁障碍 分类器(UML) 小波 机器学习 特征提取 心理学 精神科 认知
作者
Reza Akbari Movahed,Gila Pirzad Jahromi,Shima Shahyad,Gholam Hossein Meftahi
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:358: 109209-109209 被引量:64
标识
DOI:10.1016/j.jneumeth.2021.109209
摘要

Major depressive disorder (MDD) is a prevalent mental illness that is diagnosed through questionnaire-based approaches; however, these methods may not lead to an accurate diagnosis. In this regard, many studies have focused on using electroencephalogram (EEG) signals and machine learning techniques to diagnose MDD. This paper proposes a machine learning framework for MDD diagnosis, which uses different types of EEG-derived features. The features are extracted using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis methods. The sequential backward feature selection (SBFS) algorithm is also employed to perform feature selection. Various classifier models are utilized to select the best one for the proposed framework. The proposed method is validated with a public EEG dataset, including the EEG data of 34 MDD patients and 30 healthy subjects. The evaluation of the proposed framework is conducted using 10-fold cross-validation, providing the metrics such as accuracy (AC), sensitivity (SE), specificity (SP), F1-score (F1), and false discovery rate (FDR). The best performance of the proposed method has provided an average AC of 99%, SE of 98.4%, SP of 99.6%, F1 of 98.9%, and FDR of 0.4% using the support vector machine with RBF kernel (RBFSVM) classifier. The obtained results demonstrate that the proposed method outperforms other approaches for MDD classification based on EEG signals. According to the obtained results, a highly accurate MDD diagnosis would be provided using the proposed method, while it can be utilized to develop a computer-aided diagnosis (CAD) tool for clinical purposes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助LongY采纳,获得10
刚刚
刚刚
冬虫夏草完成签到,获得积分10
刚刚
纯情蟑螂完成签到,获得积分10
1秒前
奋斗以松完成签到,获得积分10
1秒前
何故完成签到 ,获得积分10
1秒前
务实振家发布了新的文献求助10
1秒前
2秒前
2秒前
愤怒的夜绿完成签到,获得积分10
2秒前
2秒前
3秒前
grande完成签到,获得积分10
3秒前
黄晃晃完成签到,获得积分10
3秒前
djxdjt发布了新的文献求助10
3秒前
岳岳发布了新的文献求助10
3秒前
3秒前
4秒前
Str0n完成签到,获得积分10
5秒前
5秒前
万能图书馆应助ctttt采纳,获得10
5秒前
5秒前
大知闲闲完成签到,获得积分10
5秒前
鹂鹂复霖霖完成签到,获得积分10
6秒前
微糖完成签到,获得积分10
6秒前
Sun发布了新的文献求助10
6秒前
00发布了新的文献求助10
6秒前
Jasper应助舒心初晴采纳,获得10
7秒前
123木头人发布了新的文献求助10
8秒前
黑章鱼保罗完成签到,获得积分10
8秒前
阿白完成签到,获得积分10
8秒前
8秒前
小王时发布了新的文献求助10
8秒前
只是当时已惘然完成签到 ,获得积分10
8秒前
云朵完成签到,获得积分10
8秒前
单薄的钢笔完成签到,获得积分10
9秒前
爆米花应助愤怒的夜绿采纳,获得10
9秒前
喜悦柠檬完成签到 ,获得积分10
11秒前
哆啦完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651771
求助须知:如何正确求助?哪些是违规求助? 4785921
关于积分的说明 15056130
捐赠科研通 4810446
什么是DOI,文献DOI怎么找? 2573185
邀请新用户注册赠送积分活动 1529071
关于科研通互助平台的介绍 1488014