A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis

支持向量机 人工智能 模式识别(心理学) 特征选择 脑电图 计算机科学 重性抑郁障碍 分类器(UML) 小波 机器学习 特征提取 心理学 精神科 认知
作者
Reza Akbari Movahed,Gila Pirzad Jahromi,Shima Shahyad,Gholam Hossein Meftahi
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:358: 109209-109209 被引量:64
标识
DOI:10.1016/j.jneumeth.2021.109209
摘要

Major depressive disorder (MDD) is a prevalent mental illness that is diagnosed through questionnaire-based approaches; however, these methods may not lead to an accurate diagnosis. In this regard, many studies have focused on using electroencephalogram (EEG) signals and machine learning techniques to diagnose MDD. This paper proposes a machine learning framework for MDD diagnosis, which uses different types of EEG-derived features. The features are extracted using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis methods. The sequential backward feature selection (SBFS) algorithm is also employed to perform feature selection. Various classifier models are utilized to select the best one for the proposed framework. The proposed method is validated with a public EEG dataset, including the EEG data of 34 MDD patients and 30 healthy subjects. The evaluation of the proposed framework is conducted using 10-fold cross-validation, providing the metrics such as accuracy (AC), sensitivity (SE), specificity (SP), F1-score (F1), and false discovery rate (FDR). The best performance of the proposed method has provided an average AC of 99%, SE of 98.4%, SP of 99.6%, F1 of 98.9%, and FDR of 0.4% using the support vector machine with RBF kernel (RBFSVM) classifier. The obtained results demonstrate that the proposed method outperforms other approaches for MDD classification based on EEG signals. According to the obtained results, a highly accurate MDD diagnosis would be provided using the proposed method, while it can be utilized to develop a computer-aided diagnosis (CAD) tool for clinical purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨灵培发布了新的文献求助10
1秒前
1秒前
1秒前
爆米花应助安静的山菡采纳,获得10
1秒前
科研通AI6应助美美桑内采纳,获得10
1秒前
2秒前
qq发布了新的文献求助10
2秒前
2秒前
航海家发布了新的文献求助10
2秒前
3秒前
KUN完成签到,获得积分10
3秒前
Grondwet发布了新的文献求助10
4秒前
小菜鸟完成签到,获得积分10
4秒前
4秒前
zhuwei发布了新的文献求助10
5秒前
琉璃岁月完成签到,获得积分10
5秒前
合适的海安完成签到,获得积分20
5秒前
一一发布了新的文献求助10
6秒前
思源应助缓慢的灵枫采纳,获得10
6秒前
北北北发布了新的文献求助10
6秒前
6秒前
6秒前
每天100次完成签到,获得积分10
7秒前
田様应助西瓜瓜采纳,获得10
7秒前
wanci应助Luke采纳,获得10
7秒前
勤劳茗完成签到,获得积分20
7秒前
feifei发布了新的文献求助10
8秒前
忧虑的书竹完成签到,获得积分10
8秒前
打打应助YH_Z采纳,获得10
9秒前
高兴白莲发布了新的文献求助10
9秒前
9秒前
高高千筹完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
Mr_H完成签到 ,获得积分10
10秒前
Vyasa发布了新的文献求助10
11秒前
英姑应助随便采纳,获得10
12秒前
12秒前
12秒前
bkagyin应助zhuwei采纳,获得10
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442878
求助须知:如何正确求助?哪些是违规求助? 4552922
关于积分的说明 14239742
捐赠科研通 4474315
什么是DOI,文献DOI怎么找? 2451988
邀请新用户注册赠送积分活动 1442905
关于科研通互助平台的介绍 1418632