A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis

支持向量机 人工智能 模式识别(心理学) 特征选择 脑电图 计算机科学 重性抑郁障碍 分类器(UML) 小波 机器学习 特征提取 心理学 精神科 认知
作者
Reza Akbari Movahed,Gila Pirzad Jahromi,Shima Shahyad,Gholam Hossein Meftahi
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:358: 109209-109209 被引量:64
标识
DOI:10.1016/j.jneumeth.2021.109209
摘要

Major depressive disorder (MDD) is a prevalent mental illness that is diagnosed through questionnaire-based approaches; however, these methods may not lead to an accurate diagnosis. In this regard, many studies have focused on using electroencephalogram (EEG) signals and machine learning techniques to diagnose MDD. This paper proposes a machine learning framework for MDD diagnosis, which uses different types of EEG-derived features. The features are extracted using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis methods. The sequential backward feature selection (SBFS) algorithm is also employed to perform feature selection. Various classifier models are utilized to select the best one for the proposed framework. The proposed method is validated with a public EEG dataset, including the EEG data of 34 MDD patients and 30 healthy subjects. The evaluation of the proposed framework is conducted using 10-fold cross-validation, providing the metrics such as accuracy (AC), sensitivity (SE), specificity (SP), F1-score (F1), and false discovery rate (FDR). The best performance of the proposed method has provided an average AC of 99%, SE of 98.4%, SP of 99.6%, F1 of 98.9%, and FDR of 0.4% using the support vector machine with RBF kernel (RBFSVM) classifier. The obtained results demonstrate that the proposed method outperforms other approaches for MDD classification based on EEG signals. According to the obtained results, a highly accurate MDD diagnosis would be provided using the proposed method, while it can be utilized to develop a computer-aided diagnosis (CAD) tool for clinical purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小木虫发布了新的文献求助10
1秒前
2秒前
VV发布了新的文献求助10
2秒前
11123131发布了新的文献求助10
2秒前
3秒前
NexusExplorer应助木子剑光军采纳,获得10
3秒前
六一发布了新的文献求助10
3秒前
3秒前
大椒完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
星辰大海应助俊逸艳一采纳,获得10
6秒前
Estrella发布了新的文献求助10
6秒前
愉博完成签到,获得积分10
6秒前
胡宇完成签到,获得积分10
7秒前
上官若男应助你求我一下采纳,获得10
7秒前
李爱国应助第五个完全数采纳,获得10
7秒前
木棉哆哆完成签到,获得积分10
7秒前
7秒前
111发布了新的文献求助10
8秒前
浮游应助肉苁蓉采纳,获得10
8秒前
友好的储发布了新的文献求助10
8秒前
living笑白发布了新的文献求助10
8秒前
8秒前
8秒前
完美世界应助Yangyue采纳,获得10
9秒前
桐桐应助小太阳采纳,获得10
9秒前
活泼的棒棒糖完成签到 ,获得积分10
9秒前
laxy发布了新的文献求助10
9秒前
apdfew完成签到,获得积分10
10秒前
Akim应助嘟嘟采纳,获得10
11秒前
11秒前
牛逼man完成签到,获得积分10
12秒前
12秒前
emmmmmq发布了新的文献求助10
12秒前
王宇轲发布了新的文献求助10
13秒前
猪猪hero发布了新的文献求助10
13秒前
13秒前
Mm完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933105
求助须知:如何正确求助?哪些是违规求助? 4201461
关于积分的说明 13052835
捐赠科研通 3975404
什么是DOI,文献DOI怎么找? 2178354
邀请新用户注册赠送积分活动 1194774
关于科研通互助平台的介绍 1106106