A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis

支持向量机 人工智能 模式识别(心理学) 特征选择 脑电图 计算机科学 重性抑郁障碍 分类器(UML) 小波 机器学习 特征提取 心理学 精神科 认知
作者
Reza Akbari Movahed,Gila Pirzad Jahromi,Shima Shahyad,Gholam Hossein Meftahi
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:358: 109209-109209 被引量:64
标识
DOI:10.1016/j.jneumeth.2021.109209
摘要

Major depressive disorder (MDD) is a prevalent mental illness that is diagnosed through questionnaire-based approaches; however, these methods may not lead to an accurate diagnosis. In this regard, many studies have focused on using electroencephalogram (EEG) signals and machine learning techniques to diagnose MDD. This paper proposes a machine learning framework for MDD diagnosis, which uses different types of EEG-derived features. The features are extracted using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis methods. The sequential backward feature selection (SBFS) algorithm is also employed to perform feature selection. Various classifier models are utilized to select the best one for the proposed framework. The proposed method is validated with a public EEG dataset, including the EEG data of 34 MDD patients and 30 healthy subjects. The evaluation of the proposed framework is conducted using 10-fold cross-validation, providing the metrics such as accuracy (AC), sensitivity (SE), specificity (SP), F1-score (F1), and false discovery rate (FDR). The best performance of the proposed method has provided an average AC of 99%, SE of 98.4%, SP of 99.6%, F1 of 98.9%, and FDR of 0.4% using the support vector machine with RBF kernel (RBFSVM) classifier. The obtained results demonstrate that the proposed method outperforms other approaches for MDD classification based on EEG signals. According to the obtained results, a highly accurate MDD diagnosis would be provided using the proposed method, while it can be utilized to develop a computer-aided diagnosis (CAD) tool for clinical purposes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自知则知之完成签到,获得积分10
刚刚
刚刚
刚刚
杨永信发布了新的文献求助10
刚刚
echo发布了新的文献求助10
1秒前
宋宋发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
FashionBoy应助hxy采纳,获得10
2秒前
1090发布了新的文献求助10
2秒前
2秒前
小猪发布了新的文献求助10
3秒前
宁幼萱发布了新的文献求助10
3秒前
合适板栗完成签到,获得积分10
3秒前
4秒前
星辰完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
liuxiaomeng发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
Aress璇玑发布了新的文献求助10
5秒前
义气凡霜完成签到,获得积分10
5秒前
5秒前
张明完成签到,获得积分10
6秒前
kwl发布了新的文献求助10
6秒前
7秒前
8秒前
马铃薯完成签到,获得积分10
8秒前
jayliu完成签到,获得积分10
9秒前
Lny应助Seathern采纳,获得10
9秒前
9秒前
笑点低妍发布了新的文献求助10
9秒前
豆本豆完成签到,获得积分10
10秒前
小刺猬发布了新的文献求助10
10秒前
10秒前
kobe发布了新的文献求助10
10秒前
Ivory完成签到,获得积分10
10秒前
虚心的清发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839