已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Objective Wavelet-Based Pixel-Level Image Fusion Using Multi-Objective Constriction Particle Swarm Optimization

图像融合 粒子群优化 像素 人工智能 融合 图像(数学) 计算机科学 计算机视觉 模式识别(心理学) 算法 语言学 哲学
作者
Yifeng Niu,Lincheng Shen,Xiaohua Huo,Guangxia Liang
出处
期刊:Studies in computational intelligence 卷期号:: 151-178 被引量:5
标识
DOI:10.1007/978-3-642-05165-4_7
摘要

In most methods of pixel-level image fusion, determining how to build the fusion model is usually based on people’s experience, and the configuration of fusion parameters is somewhat arbitrary. In this chapter, a novel method of multi-objective pixel-level image fusion is presented, which can overcome the limitations of conventional methods, simplify the fusion model, and achieve the optimal fusion metrics. First the uniform model of pixel-level image fusion based on discrete wavelet transform is established, two fusion rules are designed; then the proper evaluation metrics of pixel-level image fusion are given, new conditional mutual information is proposed, which can avoid the information overloaded; finally the fusion parameters are selected as the decision variables and the multi-objective constriction particle swarm optimization (MOCPSO) is proposed and used to search the optimal fusion parameters. MOCPSO not only uses mutation operator to avoid earlier convergence, but also uses a new crowding operator to improve the distribution of nondominated solutions along the Pareto front, and introduces the uniform design to obtain the optimal parameter combination. The experiments of MOCPSO test, multi-focus image fusion, blind image fusion, multi-resolution image fusion, and color image fusion are conducted. Experimental results indicate that MOCPSO has a higher convergence speed and better exploratory capabilities than MOPSO, especially when the number of objectives is large, and that the fusion method based on MOCPSO is is suitable for many types of pixel-level image fusion and can realize the Pareto optimal image fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助cndxh采纳,获得10
1秒前
Zylan完成签到,获得积分10
2秒前
周周周发布了新的文献求助10
3秒前
吴小燕发布了新的文献求助10
5秒前
隐形大白完成签到,获得积分10
5秒前
没时间解释了完成签到 ,获得积分10
7秒前
youlinn发布了新的文献求助10
7秒前
悠悠完成签到 ,获得积分10
7秒前
sweet完成签到 ,获得积分10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
善学以致用应助斯文明杰采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Momomo应助zhuzhihao采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
10秒前
怡然书萱发布了新的文献求助10
11秒前
11秒前
12秒前
cndxh完成签到,获得积分10
12秒前
简让完成签到 ,获得积分10
13秒前
神勇嫣完成签到 ,获得积分10
13秒前
燕尔蓝完成签到,获得积分10
14秒前
CodeCraft应助谢绍博采纳,获得10
15秒前
song完成签到 ,获得积分10
15秒前
李昆朋完成签到,获得积分10
17秒前
OOK发布了新的文献求助10
17秒前
17秒前
123发布了新的文献求助10
17秒前
17秒前
SciGPT应助ersheng采纳,获得10
18秒前
小钥匙完成签到 ,获得积分10
19秒前
Drwenlu发布了新的文献求助10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482112
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388421
捐赠科研通 4511951
什么是DOI,文献DOI怎么找? 2472648
邀请新用户注册赠送积分活动 1458905
关于科研通互助平台的介绍 1432309