Multi-Objective Wavelet-Based Pixel-Level Image Fusion Using Multi-Objective Constriction Particle Swarm Optimization

图像融合 粒子群优化 像素 人工智能 融合 图像(数学) 计算机科学 计算机视觉 模式识别(心理学) 算法 语言学 哲学
作者
Yifeng Niu,Lincheng Shen,Xiaohua Huo,Guangxia Liang
出处
期刊:Studies in computational intelligence 卷期号:: 151-178 被引量:5
标识
DOI:10.1007/978-3-642-05165-4_7
摘要

In most methods of pixel-level image fusion, determining how to build the fusion model is usually based on people’s experience, and the configuration of fusion parameters is somewhat arbitrary. In this chapter, a novel method of multi-objective pixel-level image fusion is presented, which can overcome the limitations of conventional methods, simplify the fusion model, and achieve the optimal fusion metrics. First the uniform model of pixel-level image fusion based on discrete wavelet transform is established, two fusion rules are designed; then the proper evaluation metrics of pixel-level image fusion are given, new conditional mutual information is proposed, which can avoid the information overloaded; finally the fusion parameters are selected as the decision variables and the multi-objective constriction particle swarm optimization (MOCPSO) is proposed and used to search the optimal fusion parameters. MOCPSO not only uses mutation operator to avoid earlier convergence, but also uses a new crowding operator to improve the distribution of nondominated solutions along the Pareto front, and introduces the uniform design to obtain the optimal parameter combination. The experiments of MOCPSO test, multi-focus image fusion, blind image fusion, multi-resolution image fusion, and color image fusion are conducted. Experimental results indicate that MOCPSO has a higher convergence speed and better exploratory capabilities than MOPSO, especially when the number of objectives is large, and that the fusion method based on MOCPSO is is suitable for many types of pixel-level image fusion and can realize the Pareto optimal image fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangkexin发布了新的文献求助10
刚刚
1秒前
1秒前
重要无招发布了新的文献求助10
3秒前
6秒前
6秒前
辛夷发布了新的文献求助10
7秒前
充电宝应助来来采纳,获得10
7秒前
重要无招完成签到,获得积分10
7秒前
Hanson完成签到,获得积分10
8秒前
9秒前
zhangkexin完成签到,获得积分10
9秒前
cndxh完成签到 ,获得积分10
10秒前
10秒前
10秒前
Akim应助哭泣的金鱼采纳,获得10
10秒前
合适橘完成签到,获得积分10
11秒前
聪明山芙完成签到,获得积分10
11秒前
慵懒芙芙完成签到 ,获得积分10
11秒前
jinmuna发布了新的文献求助20
11秒前
基金中中中完成签到,获得积分10
12秒前
12秒前
沈万熙发布了新的文献求助10
13秒前
乐乐发布了新的文献求助10
15秒前
16秒前
绵羊座鸭梨完成签到 ,获得积分10
17秒前
jingxian发布了新的文献求助10
20秒前
21秒前
深情安青应助斯文念波采纳,获得10
22秒前
充电宝应助清仔采纳,获得10
24秒前
bkagyin应助乐乐采纳,获得10
24秒前
lili完成签到 ,获得积分10
24秒前
25秒前
一一yi完成签到,获得积分10
26秒前
金鱼完成签到,获得积分10
27秒前
27秒前
28秒前
落玉盘关注了科研通微信公众号
30秒前
失眠迎松完成签到,获得积分10
32秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176