已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Determining The Importance Of Hands On Ability For Engineers

独创性 外展 课程 工作(物理) 灵活性(工程) 计算机科学 工程伦理学 引用 工程管理 工程类 管理 政治学 机械工程 法学 新古典经济学 渔业 经济 生物
作者
Margaret Miller,Leonard J. Bohmann,William Helton,Anna Pereira
标识
DOI:10.18260/1-2--5243
摘要

Abstract NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract Determining the Importance of Hands-On Ability for Engineers Keywords: hands-on, attributes, industry Introduction Two challenges facing engineering educators today are: (1) to provide a curriculum that prepares graduates for the work of the twenty-first century; (2) to recruit more students to the field of engineering. A number of reports cite the shortcomings of current curricula1-4. For example, the traditional engineering curriculum does not prepare graduates to adapt quickly to new job requirements or to work effectively in the global economy or to solve the large complex problems of alternative energy, environmental protection, and homeland security. Furthermore, the number of students graduating with engineering degrees in the U.S. each year has remained relatively constant in recent decades despite the need for technical solutions to important societal problems and even as the number of degrees awarded in other countries has increased. Outreach to K12 student populations5 and greater flexibility in the engineering curriculum6 are recognized as important components of a solution to this problem. Hands-on ability has an important role in both challenges mentioned above. Although engineering work in the twenty-first century will be increasingly sophisticated, practical ability and intuition about physical phenomenon remain important. In fact, the NAE cites “practical ingenuity” as one of the key attributes of the engineer of 20201. Because students today are less likely to have grown up in rural communities than their predecessors, they have probably had fewer opportunities to tinker. Instead of fixing the family tractor or the hay bailer, the engineering students of today and tomorrow will have lived a cocooned virtual life of video games and online chat forums. While facility with computers is advantageous, our curricula do not provide adequate opportunities for many students to overcome this tinkering deficit. More importantly, there is some evidence that low self-efficacy with respect to tinkering may even turn some students off from engineering7,8. We proceed with three premises: that hands-on ability is important for the engineering work of the 21st century; that hands-on ability enhances the enjoyment of and interest in doing engineering; and that hands-on ability can be taught. Regarding the last premise, some may believe that hands-on ability is an innate attribute or talent that differs by gender. Nevertheless, current scientific evidence suggests tool-use and technical ability is a common attribute of our shared lineage 9,10,11. Moreover, the scientific evidence that inherent talent plays a large role in vocational expertise is actually very weak, whereas, the evidence supporting the role of practice and experience is exceptionally strong12. Our work has several goals. The first is to determine whether and why “hands-on ability” is important. Recognizing that “hands-on ability” is more than a motor skill, part of this goal is to understand the cognitive and perceptual abilities that are encompassed by “hands-on ability”. Another goal is to determine how hands-on ability affects student motivation, confidence and attitude toward engineering. A third goal is to determine which experiences are most helpful in developing hands-on ability. Finally, we are interested in identifying practices at the undergraduate level that can effectively teach hands-on ability. It should be noted that our work is focusing primarily on mechanical and electrical engineering students. There are several reasons for this: ME and EE are popular majors with large numbers of students; both fields have

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
myg123完成签到 ,获得积分10
1秒前
自信夜春发布了新的文献求助10
1秒前
科研皇完成签到,获得积分10
6秒前
美好善斓完成签到 ,获得积分10
6秒前
冷静的访天完成签到 ,获得积分10
6秒前
自信夜春完成签到,获得积分10
7秒前
7秒前
刘瀚臻发布了新的文献求助20
8秒前
洛城完成签到,获得积分10
8秒前
晚意完成签到 ,获得积分10
9秒前
温馨家园完成签到 ,获得积分10
9秒前
hhhhh完成签到 ,获得积分10
10秒前
11秒前
南瓜小笨111111完成签到 ,获得积分10
11秒前
月冷完成签到 ,获得积分10
13秒前
huahua完成签到,获得积分10
13秒前
斯文败类应助bzy采纳,获得10
14秒前
14秒前
14秒前
wang1030完成签到 ,获得积分10
15秒前
讲故事发布了新的文献求助10
15秒前
小小佳作发布了新的文献求助150
16秒前
zyz发布了新的文献求助10
17秒前
zb发布了新的文献求助10
17秒前
徐铭完成签到,获得积分10
17秒前
大气幻丝完成签到,获得积分10
18秒前
llyn发布了新的文献求助10
18秒前
小L发布了新的文献求助10
19秒前
hhhh完成签到 ,获得积分10
19秒前
明亮的小蘑菇完成签到 ,获得积分10
20秒前
小二郎应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
Koalas应助刘瀚臻采纳,获得20
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
cy0824完成签到 ,获得积分10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得30
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493