光催化
光降解
甲基橙
材料科学
罗丹明B
氧化物
化学工程
纳米技术
氮气
兴奋剂
光化学
催化作用
化学
光电子学
有机化学
冶金
工程类
作者
Yujie Ma,Xiaolin Li,Zhi Yang,Shusheng Xu,Wei Zhang,Yanjie Su,Nantao Hu,Weijie Lü,Jie Feng,Yafei Zhang
出处
期刊:Langmuir
[American Chemical Society]
日期:2016-08-29
卷期号:32 (37): 9418-9427
被引量:92
标识
DOI:10.1021/acs.langmuir.6b02011
摘要
Cuprous oxide (Cu2O) is an attractive photocatalyst because of its visible-light-driven photocatalytic behavior, abundance, low toxicity, and environmental compatibility. However, its short electron diffusion length and low hole mobility result in low photocatalytic efficiency, which hinders its wider applications. Herein, we report an in situ method to introduce nitrogen-doped carbon dots (N-CDs) into Cu2O frameworks. It is interestingly found that the introduction of N-CDs drives the morphology of N-CDs/Cu2O to evolve from rough cube to sphere, and the most encouraging result is that all of the obtained N-CDs/Cu2O composites exhibit better photocatalytic activities than pure Cu2O cubes. The optimal N-CDs/Cu2O photocatalyst is synthesized with 10 mL of N-CDs solution, which shows the best degradation ability (100%, 70 min), far superior to pure Cu2O cubes (∼5%, 70 min) and P25 (∼10%, 70 min). Beside the photodegradation of methyl orange, N-CDs/Cu2O(10) composites also exhibit excellent photocatalytic activities in the photodegradation of methyl blue and rhodamine B. It is demonstrated that the excellent photocatalytic performance of N-CDs/Cu2O composites can be attributed to the highly roughened structure and the suppression of electron-hole recombination as a result of the introduction of N-CDs. These findings demonstrate that the conjugation of CDs is a promising method to improve the photocatalytic activities for traditional semiconductors.
科研通智能强力驱动
Strongly Powered by AbleSci AI