深度学习
计算机科学
排名(信息检索)
光学(聚焦)
深层神经网络
人工智能
推荐系统
人工神经网络
比例(比率)
数据科学
情报检索
机器学习
量子力学
光学
物理
作者
Paul Covington,Jay Adams,Emre Sargin
出处
期刊:Conference on Recommender Systems
日期:2016-09-07
被引量:2524
标识
DOI:10.1145/2959100.2959190
摘要
YouTube represents one of the largest scale and most sophisticated industrial recommendation systems in existence. In this paper, we describe the system at a high level and focus on the dramatic performance improvements brought by deep learning. The paper is split according to the classic two-stage information retrieval dichotomy: first, we detail a deep candidate generation model and then describe a separate deep ranking model. We also provide practical lessons and insights derived from designing, iterating and maintaining a massive recommendation system with enormous user-facing impact.
科研通智能强力驱动
Strongly Powered by AbleSci AI