作者
Thi Tho Bui,Chun Hua Piao,Chang Ho Song,Hee Soon Shin,Ok Hee Chai
摘要
Bupleurum chinense belongs to the Bupleurum spp. family that has been used in traditional herbal medicine for over thousand years. It has been reported to have anti-inflammatory, anti-oxidant, hepato-protective, antipyretic, analgesic, anti-fibrotic and immunomodulatory effect. However, the effect of B. Chinense on allergic asthma remains unclear. This study investigated the immunomodulatory effects of B. Chinense extracts (BCE) on airway inflammation in asthmatic mice model. In the ovalbumin (OVA)-induced allergic asthma model, we evaluated the number of total cells, differential inflammatory cells and the production of proinflammatory cytokines in bronchoalveolar lavage fluid (BALF) and lung homogenate as well as histological structure. The levels of NFκB p65, IκBα, p-NFκB p65, p-IκBα and the total immunoglobulin (Ig) E, anti-OVA IgE, anti-OVA IgG were also examined. The oral administration of 200 mg/kg BCE inhibited the accumulation of inflammatory cells especially eosinophils in BALF. Also, BCE regulated the imbalance of Th1, Th2 and Th17-related production, with attenuated the expression of GATA3, IL-1β, IL-4, IL-5, IL-6, TNF-α and RORγt, IL-17A in BALF and lung homogenate, meanwhile, up-regulated the secretion of INF-γ in lung homogenate. The levels of IgE, anti-OVA IgE, anti-OVA IgG1 and anti-OVA IgG2a were also suppressed by BCE treatment in serum. Futhermore, BCE inhibited the proinflammatory cytokines via inactivation of NFκB p65 phosphorylation and IκBα degradation in cytoplasm. The histological analysis showed that the infiltration of inflammatory cells, mucus hypersecretion and collagen fiber deposits were ameliorated in BCE treated mice. In addition, BCE induced the functional differentiation of naive CD4+ T cells forward to Th1 and Tr1 through producing INF-γ and IL-10. These results suggest that BCE may have therapeutic potential for treating allergic asthma through inhibiting Th2/Th17 cytokines production by inactivation of NFκB pathway.