伊诺斯
医学
小窝
内科学
内分泌学
糖尿病性心肌病
内皮功能障碍
糖尿病
小窝蛋白
心肌保护
氧化应激
链脲佐菌素
缺血
硝基酪氨酸
一氧化氮
一氧化氮合酶
信号转导
心力衰竭
生物
心肌病
生物化学
作者
Wating Su,Yuan Zhang,Qiongxia Zhang,Jinjin Xu,Liying Zhan,Qiqi Zhu,Qingquan Lian,Hui-min Liu,Zhengyuan Xia,Zhengyuan Xia,Shaoqing Lei
标识
DOI:10.1186/s12933-016-0460-z
摘要
Patients with diabetes are prone to develop cardiac hypertrophy and more susceptible to myocardial ischemia-reperfusion (I/R) injury, which are concomitant with hyperglycemia-induced oxidative stress and impaired endothelial nitric oxide (NO) synthase (eNOS)/NO signaling. Caveolae are critical in the transduction of eNOS/NO signaling in cardiovascular system. Caveolin (Cav)-3, the cardiomyocytes-specific caveolae structural protein, is decreased in the diabetic heart in which production of reactive oxygen species are increased. We hypothesized that treatment with antioxidant N-acetylcysteine (NAC) could enhance cardiac Cav-3 expression and attenuate caveolae dysfunction and the accompanying eNOS/NO signaling abnormalities in diabetes.Control or streptozotocin-induced diabetic rats were either untreated or treated with NAC (1.5 g/kg/day, NAC) by oral gavage for 4 weeks. Rats in subgroup were randomly assigned to receive 30 min of left anterior descending artery ligation followed by 2 h of reperfusion. Isolated rat cardiomyocytes or H9C2 cells were exposed to low glucose (LG, 5.5 mmol/L) or high glucose (HG, 25 mmol/L) for 36 h before being subjected to 4 h of hypoxia followed by 4 h of reoxygenation (H/R).NAC treatment ameliorated myocardial dysfunction and cardiac hypertrophy, and attenuated myocardial I/R injury and post-ischemic cardiac dysfunction in diabetic rats. NAC attenuated the reductions of NO, Cav-3 and phosphorylated eNOS and mitigated the augmentation of O2-, nitrotyrosine and 15-F2t-isoprostane in diabetic myocardium. Immunofluorescence analysis demonstrated the colocalization of Cav-3 and eNOS in isolated cardiomyocytes. Immunoprecipitation analysis revealed that diabetic conditions decreased the association of Cav-3 and eNOS in isolated cardiomyocytes, which was enhanced by treatment with NAC. Disruption of caveolae by methyl-β-cyclodextrin or Cav-3 siRNA transfection reduced eNOS phosphorylation. NAC treatment attenuated the reductions of Cav-3 expression and eNOS phosphorylation in HG-treated cardiomyocytes or H9C2 cells. NAC treatment attenuated HG and H/R induced cell injury, which was abolished during concomitant treatment with Cav-3 siRNA or eNOS siRNA.Hyperglycemia-induced inhibition of eNOS activity might be consequences of caveolae dysfunction and reduced Cav-3 expression. Antioxidant NAC attenuated myocardial dysfunction and myocardial I/R injury by improving Cav-3/eNOS signaling.
科研通智能强力驱动
Strongly Powered by AbleSci AI