高光谱成像
大气校正
遥感
土地覆盖
预处理器
像素
环境科学
全光谱成像
计算机科学
地理
反射率
人工智能
土地利用
物理
工程类
光学
土木工程
作者
Jin-Duk Lee,Kon-Joon Bhang,Young-Don Joo
出处
期刊:The Journal of the Korea Contents Association
[The Korea Contents Association]
日期:2016-07-28
卷期号:16 (7): 31-41
被引量:1
标识
DOI:10.5392/jkca.2016.16.07.031
摘要
하이퍼스펙트럴 영상을 이용하여 토지피복 분류를 정확히 수행하기 위해서는 전처리 작업으로서 대기보정을 거쳐야 한다. 항공 하이퍼스펙트럴 영상에 대하여 대기보정을 실시하고 대기보정 유 무에 따른 해수, 갯벌, 식생, 아스팔트, 콘크리트 등의 토지피복 항목별 분광반사율 특성을 비교하여 대기보정의 뚜렷한 효과를 확인할 수 있었다. 대기보정 후의 영상에 대하여 최대우도법, 분광각맵퍼법 등의 화소기반 감독분류기법으로 각각 토지피복 분류를 행하고 그 결과를 비교하였다. 분광각맵퍼법의 경우 임계각 $0.4^{\circ}$에서 노이즈를 최소화하면서 해수영역을 가장 양호하게 분류해 낼 수 있었다. 같은 개체라도 다양한 분광특성을 나타내는 하이퍼스펙트럴 영상의 경우 연안지역에서는 종래의 화소기반 분류기법보다는 축척, 분광 정보, 형태, 결 등을 종합적으로 고려하는 객체기반 분류기법이 더 우월할 것으로 사료된다. Atmospheric correction as a preprocessing work should be performed to conduct accurately landcover/landuse classification using hyperspectral imagery. Atmospheric correction on airborne hyperspectral images was conducted and then the effect of atmospheric correction by comparing spectral reflectance characteristics before and after atmospheric correction for a few landuse classes was analyzed. In addition, land cover classification was first conducted respectively by the maximum likelihood method and the spectral angle mapper method after atmospheric correction and then the results were compared. Applying the spectral angle mapper method, the sea water area were able to be classified with the minimum of noise at the threshold angle of 4 arc degree. It is considered that object-based classification method, which take into account of scale, spectral information, shape, texture and so forth comprehensively, is more advantageous than pixel-based classification methods in conducting landcover classification of the coastal area with hyperspectral images in which even the same object represents various spectral characteristics.
科研通智能强力驱动
Strongly Powered by AbleSci AI