Real-time detection of small and dim moving objects in IR video sequences using a robust background estimator and a noise-adaptive double thresholding

计算机科学 计算机视觉 人工智能 背景减法 阈值 像素 帧速率 前景检测 恒虚警率 噪音(视频) 帧(网络) 估计员 目标检测 假警报 背景噪声 可靠性(半导体) 分割 图像(数学) 数学 统计 物理 电信 量子力学 功率(物理)
作者
Andrea Zingoni,Marco Diani,Giovanni Corsini
出处
期刊:Proceedings of SPIE 卷期号:9988: 99880L-99880L
标识
DOI:10.1117/12.2241259
摘要

We developed an algorithm for automatically detecting small and poorly contrasted (dim) moving objects in real-time, within video sequences acquired through a steady infrared camera. The algorithm is suitable for different situations since it is independent of the background characteristics and of changes in illumination. Unlike other solutions, small objects of any size (up to single-pixel), either hotter or colder than the background, can be successfully detected. The algorithm is based on accurately estimating the background at the pixel level and then rejecting it. A novel approach permits background estimation to be robust to changes in the scene illumination and to noise, and not to be biased by the transit of moving objects. Care was taken in avoiding computationally costly procedures, in order to ensure the real-time performance even using low-cost hardware. The algorithm was tested on a dataset of 12 video sequences acquired in different conditions, providing promising results in terms of detection rate and false alarm rate, independently of background and objects characteristics. In addition, the detection map was produced frame by frame in real-time, using cheap commercial hardware. The algorithm is particularly suitable for applications in the fields of video-surveillance and computer vision. Its reliability and speed permit it to be used also in critical situations, like in search and rescue, defence and disaster monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lily发布了新的文献求助10
1秒前
1秒前
一叶完成签到 ,获得积分10
2秒前
Cast_Lappland发布了新的文献求助10
3秒前
orixero应助木禾火采纳,获得10
4秒前
杳鸢应助谨言采纳,获得30
4秒前
Dr大壮完成签到,获得积分10
4秒前
5秒前
酷波er应助郢都小镇采纳,获得10
7秒前
mneos完成签到,获得积分20
7秒前
Cast_Lappland完成签到,获得积分10
8秒前
断舍离完成签到,获得积分10
8秒前
9秒前
陳某发布了新的文献求助10
10秒前
10秒前
FUTURE完成签到,获得积分10
10秒前
527应助科研通管家采纳,获得20
11秒前
lightgo应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
慕南枝应助科研通管家采纳,获得200
11秒前
彭于晏应助科研通管家采纳,获得30
11秒前
刀锋发布了新的文献求助50
12秒前
ceeray23应助科研通管家采纳,获得10
12秒前
科研小土豆完成签到,获得积分10
12秒前
hu发布了新的文献求助10
14秒前
wanci应助梁贵年采纳,获得10
14秒前
柴柴完成签到,获得积分10
15秒前
木禾火发布了新的文献求助10
15秒前
健忘数据线完成签到 ,获得积分10
16秒前
lv完成签到,获得积分10
16秒前
复杂焦完成签到 ,获得积分10
18秒前
岁月荣耀完成签到,获得积分10
18秒前
岁月荣耀发布了新的文献求助10
21秒前
22秒前
24秒前
加油站应助鬲木采纳,获得20
24秒前
英俊的铭应助凌123采纳,获得30
24秒前
ED应助jinin采纳,获得10
24秒前
椰子冻发布了新的文献求助50
25秒前
小紫薯完成签到 ,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081695
捐赠科研通 3226885
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800993