Real-time detection of small and dim moving objects in IR video sequences using a robust background estimator and a noise-adaptive double thresholding

计算机科学 计算机视觉 人工智能 背景减法 阈值 像素 帧速率 前景检测 恒虚警率 噪音(视频) 帧(网络) 估计员 目标检测 假警报 背景噪声 可靠性(半导体) 分割 图像(数学) 数学 统计 物理 电信 量子力学 功率(物理)
作者
Andrea Zingoni,Marco Diani,Giovanni Corsini
出处
期刊:Proceedings of SPIE 卷期号:9988: 99880L-99880L
标识
DOI:10.1117/12.2241259
摘要

We developed an algorithm for automatically detecting small and poorly contrasted (dim) moving objects in real-time, within video sequences acquired through a steady infrared camera. The algorithm is suitable for different situations since it is independent of the background characteristics and of changes in illumination. Unlike other solutions, small objects of any size (up to single-pixel), either hotter or colder than the background, can be successfully detected. The algorithm is based on accurately estimating the background at the pixel level and then rejecting it. A novel approach permits background estimation to be robust to changes in the scene illumination and to noise, and not to be biased by the transit of moving objects. Care was taken in avoiding computationally costly procedures, in order to ensure the real-time performance even using low-cost hardware. The algorithm was tested on a dataset of 12 video sequences acquired in different conditions, providing promising results in terms of detection rate and false alarm rate, independently of background and objects characteristics. In addition, the detection map was produced frame by frame in real-time, using cheap commercial hardware. The algorithm is particularly suitable for applications in the fields of video-surveillance and computer vision. Its reliability and speed permit it to be used also in critical situations, like in search and rescue, defence and disaster monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucia完成签到 ,获得积分10
刚刚
1秒前
2秒前
孙颖发布了新的文献求助10
2秒前
seedcode完成签到,获得积分10
2秒前
早睡早起身体好Q完成签到 ,获得积分10
2秒前
田様应助木木采纳,获得10
4秒前
4秒前
5秒前
6秒前
罗攀发布了新的文献求助10
6秒前
6秒前
6秒前
luo完成签到,获得积分10
8秒前
羽安发布了新的文献求助10
8秒前
科研通AI2S应助lyy采纳,获得10
8秒前
9秒前
9秒前
laber应助零可林采纳,获得50
11秒前
11秒前
lcc发布了新的文献求助10
11秒前
11秒前
tiffany发布了新的文献求助10
12秒前
木木完成签到,获得积分10
12秒前
12秒前
13秒前
丰富的不惜完成签到,获得积分10
13秒前
聪明的你完成签到,获得积分10
13秒前
13秒前
银鱼在游发布了新的文献求助10
14秒前
comz完成签到,获得积分10
14秒前
lalatrouble完成签到,获得积分10
14秒前
小薛发布了新的文献求助10
15秒前
mirror完成签到,获得积分10
16秒前
Patience发布了新的文献求助30
16秒前
阿米发布了新的文献求助10
17秒前
希望天下0贩的0应助lcc采纳,获得10
17秒前
18秒前
18秒前
打打应助JLLLLLLLL采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858