Real-time detection of small and dim moving objects in IR video sequences using a robust background estimator and a noise-adaptive double thresholding

计算机科学 计算机视觉 人工智能 背景减法 阈值 像素 帧速率 前景检测 恒虚警率 噪音(视频) 帧(网络) 估计员 目标检测 假警报 背景噪声 可靠性(半导体) 分割 图像(数学) 数学 统计 物理 电信 量子力学 功率(物理)
作者
Andrea Zingoni,Marco Diani,Giovanni Corsini
出处
期刊:Proceedings of SPIE 卷期号:9988: 99880L-99880L
标识
DOI:10.1117/12.2241259
摘要

We developed an algorithm for automatically detecting small and poorly contrasted (dim) moving objects in real-time, within video sequences acquired through a steady infrared camera. The algorithm is suitable for different situations since it is independent of the background characteristics and of changes in illumination. Unlike other solutions, small objects of any size (up to single-pixel), either hotter or colder than the background, can be successfully detected. The algorithm is based on accurately estimating the background at the pixel level and then rejecting it. A novel approach permits background estimation to be robust to changes in the scene illumination and to noise, and not to be biased by the transit of moving objects. Care was taken in avoiding computationally costly procedures, in order to ensure the real-time performance even using low-cost hardware. The algorithm was tested on a dataset of 12 video sequences acquired in different conditions, providing promising results in terms of detection rate and false alarm rate, independently of background and objects characteristics. In addition, the detection map was produced frame by frame in real-time, using cheap commercial hardware. The algorithm is particularly suitable for applications in the fields of video-surveillance and computer vision. Its reliability and speed permit it to be used also in critical situations, like in search and rescue, defence and disaster monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
waoidiosjdqaq完成签到,获得积分10
刚刚
wanci应助KENNIS采纳,获得10
1秒前
1秒前
务实幻露完成签到,获得积分10
2秒前
科研通AI6应助欣欣紫采纳,获得10
2秒前
只只完成签到,获得积分10
2秒前
2秒前
华oo00发布了新的文献求助10
3秒前
里清水完成签到 ,获得积分10
3秒前
哈哈哈哈哈哈完成签到,获得积分10
3秒前
3秒前
xing完成签到,获得积分10
3秒前
怀南完成签到,获得积分20
4秒前
4秒前
嗨喽完成签到,获得积分10
4秒前
5秒前
5秒前
没钱买文献完成签到,获得积分10
6秒前
现代晓绿应助元元采纳,获得30
6秒前
leaf完成签到 ,获得积分10
6秒前
WJ完成签到,获得积分10
8秒前
8秒前
俭朴白凡完成签到,获得积分10
8秒前
华oo00完成签到,获得积分10
8秒前
9秒前
酷波er应助景飞丹采纳,获得10
9秒前
Han发布了新的文献求助10
9秒前
OMIT完成签到,获得积分10
10秒前
爱在深秋完成签到,获得积分10
10秒前
蟑螂你好完成签到,获得积分10
10秒前
10秒前
宁阿霜完成签到,获得积分10
10秒前
11秒前
行家啊完成签到,获得积分10
11秒前
12秒前
Criminology34应助热心梦山采纳,获得10
12秒前
希望天下0贩的0应助小鱼采纳,获得10
12秒前
科目三应助邪恶西瓜皮采纳,获得10
13秒前
Wuu完成签到,获得积分10
13秒前
Liangc333完成签到,获得积分10
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167