Real-time detection of small and dim moving objects in IR video sequences using a robust background estimator and a noise-adaptive double thresholding

计算机科学 计算机视觉 人工智能 背景减法 阈值 像素 帧速率 前景检测 恒虚警率 噪音(视频) 帧(网络) 估计员 目标检测 假警报 背景噪声 可靠性(半导体) 分割 图像(数学) 数学 统计 物理 电信 量子力学 功率(物理)
作者
Andrea Zingoni,Marco Diani,Giovanni Corsini
出处
期刊:Proceedings of SPIE 卷期号:9988: 99880L-99880L
标识
DOI:10.1117/12.2241259
摘要

We developed an algorithm for automatically detecting small and poorly contrasted (dim) moving objects in real-time, within video sequences acquired through a steady infrared camera. The algorithm is suitable for different situations since it is independent of the background characteristics and of changes in illumination. Unlike other solutions, small objects of any size (up to single-pixel), either hotter or colder than the background, can be successfully detected. The algorithm is based on accurately estimating the background at the pixel level and then rejecting it. A novel approach permits background estimation to be robust to changes in the scene illumination and to noise, and not to be biased by the transit of moving objects. Care was taken in avoiding computationally costly procedures, in order to ensure the real-time performance even using low-cost hardware. The algorithm was tested on a dataset of 12 video sequences acquired in different conditions, providing promising results in terms of detection rate and false alarm rate, independently of background and objects characteristics. In addition, the detection map was produced frame by frame in real-time, using cheap commercial hardware. The algorithm is particularly suitable for applications in the fields of video-surveillance and computer vision. Its reliability and speed permit it to be used also in critical situations, like in search and rescue, defence and disaster monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pop完成签到,获得积分10
刚刚
迷路的百褶裙完成签到,获得积分10
2秒前
XiAnZH发布了新的文献求助10
2秒前
3秒前
科研通AI6应助怪诞采纳,获得10
3秒前
小坚果发布了新的文献求助10
3秒前
外向的凝阳完成签到 ,获得积分10
4秒前
dd发布了新的文献求助10
4秒前
pop发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
科研通AI2S应助CaoYi采纳,获得10
6秒前
陌上尘开完成签到 ,获得积分10
7秒前
kings完成签到,获得积分10
7秒前
毛毛完成签到,获得积分10
7秒前
椰青完成签到,获得积分10
7秒前
虚心的芹发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Qinghen发布了新的文献求助10
10秒前
小郭子应助111采纳,获得20
10秒前
10秒前
搜集达人应助沙拉酱采纳,获得10
12秒前
13秒前
上官若男应助虚幻化蛹采纳,获得10
13秒前
小二郎应助apong采纳,获得10
13秒前
lxw完成签到,获得积分10
14秒前
14秒前
52251013106发布了新的文献求助10
14秒前
Redback应助葛力采纳,获得20
14秒前
paul完成签到,获得积分10
15秒前
大龙哥886应助热心的苡采纳,获得10
15秒前
15秒前
happy璇发布了新的文献求助10
15秒前
16秒前
NexusExplorer应助长大水果采纳,获得10
16秒前
追风少年发布了新的文献求助10
17秒前
科研通AI6应助大胆剑封采纳,获得10
17秒前
QR关注了科研通微信公众号
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666314
求助须知:如何正确求助?哪些是违规求助? 4881135
关于积分的说明 15117070
捐赠科研通 4825396
什么是DOI,文献DOI怎么找? 2583303
邀请新用户注册赠送积分活动 1537470
关于科研通互助平台的介绍 1495666