AdmirePred: A method for predicting abundant miRNAs in Exosomes

微泡 小RNA 计算生物学 计算机科学 生物 遗传学 基因
作者
Akanksha Arora,Gajendra P. S. Raghava
标识
DOI:10.1101/2025.03.19.644072
摘要

Non-invasive disease diagnosis is a key application of blood exosomes in liquid biopsy, as they carry diverse biological molecules, including microRNAs (miRNAs) derived from their parent cells. Developing miRNA-based disease biomarkers requires the prediction of highly abundant miRNAs in exosomes under normal conditions for establishing a baseline for understanding their physiological roles and disease-specific variations. In this study, we present models for predicting highly abundant miRNAs in exosomes from their nucleotide sequences. The models were trained, tested, and evaluated on a dataset comprising 348 abundant and 349 non-abundant miRNAs. Initially, we applied alignment-based approaches, such as motif and similarity searches, but these methods yielded poor coverage. We then explored alignment-free approaches, particularly machine learning models leveraging a broad range of features. Our Extra Trees classifier, developed using binary profiles and TF-IDF features, achieved the highest performance with an AUC of 0.77. To further enhance predictive accuracy, we developed a hybrid method that combines machine learning models with alignment-based approaches, achieving an AUC of 0.854 on an independent dataset. To support research in non-invasive diagnostics and therapeutics, we have developed a web server, standalone tool, and Python package for AdmirePred, available at https://webs.iiitd.edu.in/raghava/admirepred/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助runtang采纳,获得10
1秒前
Nia完成签到,获得积分10
1秒前
深情安青应助wowowww采纳,获得10
1秒前
友好的小翠完成签到,获得积分10
2秒前
英俊的铭应助laihama采纳,获得10
4秒前
科研通AI5应助123采纳,获得30
5秒前
7秒前
张大彪完成签到,获得积分10
9秒前
葉葉发布了新的文献求助50
10秒前
yyy发布了新的文献求助10
10秒前
JamesPei应助大气飞雪采纳,获得20
13秒前
ding应助寂寞的迎天采纳,获得10
14秒前
14秒前
Ivy完成签到,获得积分10
16秒前
子车茗应助sc采纳,获得30
17秒前
壮观的冰巧完成签到 ,获得积分10
17秒前
17秒前
You完成签到,获得积分20
17秒前
18秒前
yyy发布了新的文献求助10
19秒前
积极的睫毛完成签到,获得积分10
19秒前
优雅沛文完成签到 ,获得积分10
19秒前
21秒前
21秒前
lm发布了新的文献求助30
22秒前
drift完成签到,获得积分10
22秒前
22秒前
22秒前
科研通AI5应助zdy采纳,获得10
23秒前
晴天完成签到 ,获得积分10
24秒前
轻松的万天完成签到 ,获得积分10
25秒前
25秒前
26秒前
123完成签到,获得积分10
26秒前
27秒前
咸鱼已躺平完成签到,获得积分10
29秒前
30秒前
32秒前
葉葉完成签到,获得积分10
32秒前
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737315
求助须知:如何正确求助?哪些是违规求助? 3281177
关于积分的说明 10023539
捐赠科研通 2997906
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731