Artificial Intelligence–Enhanced Perfusion Scoring Improves the Diagnostic Accuracy of Myocardial Perfusion Imaging

灌注 灌注扫描 心肌灌注成像 医学 内科学 心脏病学 计算机科学 核医学 人工智能 放射科
作者
Robert J.H. Miller,Paul Kavanagh,Mark A. Lemley,Joanna X. Liang,Tali Sharir,Andrew J. Einstein,Mathews B. Fish,Terrence D. Ruddy,Philipp A. Kaufmann,Albert J. Sinusas,Edward J. Miller,Timothy M. Bateman,Sharmila Dorbala,Marcelo F. Di Carli,Sean Hayes,John D. Friedman,Daniel S. Berman,Damini Dey,Piotr J. Slomka
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine]
卷期号:: jnumed.124.268079-jnumed.124.268079
标识
DOI:10.2967/jnumed.124.268079
摘要

We previously demonstrated that a deep learning (DL) model of myocardial perfusion SPECT imaging improved accuracy for detection of obstructive coronary artery disease (CAD). We aimed to improve the clinical translatability of this artificial intelligence (AI) approach using the results to derive enhanced total perfusion deficit (TPD) and 17-segment summed scores. Methods: We used a cohort of patients undergoing myocardial perfusion imaging within 180 d of invasive coronary angiography. Obstructive CAD was defined as any stenosis of at least 70% or at least 50% in the left main coronary artery. We used per-vessel DL predictions to modulate polar map pixel scores. These transformed polar maps were then used to derive TPD-DL and summed stress score-DL. We compared diagnostic performance using area under the receiver operating characteristic curve (AUC). Results: In the 555 patients held out for testing, the median age was 65 y (interquartile range, 57-73 y), and 381 (69%) were male. Obstructive CAD was present in 329 (59%) patients. The prediction performance for obstructive CAD of stress TPD-DL (AUC, 0.837; 95% CI, 0.804-0.870) was higher than AI prediction alone (AUC, 0.795; 95% CI, 0.758-0.831; P = 0.005) and traditional stress TPD (AUC, 0.737; 95% CI, 0.696-0.778; P < 0.001). Summed stress score-DL had the second highest prediction performance (AUC, 0.822; 95% CI, 0.788-0.857) and higher AUC than traditional quantitative summed stress score (AUC, 0.728; 95% CI, 0.686-0.769; P < 0.001). At a threshold of 5%, the sensitivity and specificity of TPD rose from 72% to 79% and from 62% to 70%, respectively. Conclusion: Integrating AI predictions with traditional quantitative approaches leads to a simplified AI approach, presenting clinicians with familiar measures but operating with higher accuracy than traditional quantitative scoring. This approach may facilitate integration of new AI methods into clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZX完成签到,获得积分10
刚刚
小二郎应助净土采纳,获得10
1秒前
小蘑菇应助ju龙哥采纳,获得10
2秒前
去码头整点薯条完成签到,获得积分10
2秒前
3秒前
hanscao完成签到,获得积分10
3秒前
abc完成签到,获得积分10
3秒前
eeeee发布了新的文献求助10
5秒前
周不不完成签到,获得积分10
5秒前
5秒前
Akim应助潺潺流水采纳,获得10
6秒前
7秒前
老夫子完成签到,获得积分10
7秒前
ywindm发布了新的文献求助30
8秒前
SciGPT应助Martina采纳,获得10
10秒前
10秒前
哩哩发布了新的文献求助10
11秒前
albertxin完成签到,获得积分10
11秒前
11秒前
海森堡发布了新的文献求助10
12秒前
小生不才完成签到 ,获得积分10
13秒前
Ledecky完成签到,获得积分10
13秒前
13秒前
123发布了新的文献求助10
15秒前
wangli发布了新的文献求助10
16秒前
17秒前
19秒前
不想长大完成签到,获得积分10
19秒前
天真秋寒发布了新的文献求助10
19秒前
大个应助鱼鱼子999采纳,获得10
19秒前
20秒前
20秒前
22秒前
Seven完成签到,获得积分10
23秒前
共享精神应助wxj采纳,获得10
23秒前
路过的发布了新的文献求助10
24秒前
123完成签到,获得积分10
24秒前
小蘑菇应助曾hf采纳,获得10
25秒前
25秒前
深情安青应助李小麻采纳,获得10
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489857
求助须知:如何正确求助?哪些是违规求助? 3076978
关于积分的说明 9147123
捐赠科研通 2769152
什么是DOI,文献DOI怎么找? 1519630
邀请新用户注册赠送积分活动 704069
科研通“疑难数据库(出版商)”最低求助积分说明 702084