Semantic-Aware Pseudo-Labeling for Unsupervised Meta-Learning

计算机科学 人工智能 无监督学习 自然语言处理 机器学习 模式识别(心理学)
作者
Tianran Ouyang,Xingping Dong,Mang Ye,Bo Du,Ling Shao,Jianbing Shen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-14
标识
DOI:10.1109/tpami.2025.3556378
摘要

In unsupervised meta-learning, the clustering-based pseudo-labeling approach is an attractive framework, since it is model-agnostic, allowing it to synergize with supervised algorithms to learn from unlabeled data. However, the pseudo-labels suffer from clustering noise and semantic chaos problems, further impacting the effectiveness of meta-learning. In this paper, we analyze and optimize the pseudo-labeling process, including encoding and clustering, aiming to generate semantic- like pseudo-labels to narrow the gap between unsupervised and supervised meta-learning. Firstly, during the encoding, we observe that the embedding space of existing methods lacks clustering-friendly properties, which is the primary reason for clustering noise. To address this issue, we minimize the inter-to-intra-class similarity ratio to generate clustering-friendly embedding features and validate our approach through comprehensive experiments. Then, during the clustering, we find that the semantic quality of pseudo-labels is not adequately controlled, resulting in semantic chaos of pseudo-labels. We propose a semantic-stability index to measure the semantic quality of pseudo-labels quantitatively. Based on this index, we propose the Semantic-aware Pseudo-label Reassignment mechanism to generate semantic- like pseudo-labels for all samples. Our approach is model-agnostic and can easily be integrated into existing supervised methods. To demonstrate its generalization ability, we integrate it into two representative algorithms: MAML and EP. The results on three main few-shot benchmarks clearly show that the proposed method achieves significant improvement compared to state-of-the-art models. Notably, our approach also outperforms the corresponding supervised method in three tasks. The source code will be made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GYJ完成签到 ,获得积分10
刚刚
DoLaso完成签到,获得积分10
1秒前
NexusExplorer应助ttqql采纳,获得10
2秒前
3秒前
棖0921发布了新的文献求助10
4秒前
青禾发布了新的文献求助10
4秒前
科研通AI5应助冷傲的凡波采纳,获得10
4秒前
不秃头完成签到,获得积分10
4秒前
华仔应助半柚采纳,获得10
5秒前
6秒前
distinct发布了新的文献求助10
7秒前
桐桐应助墨川采纳,获得30
7秒前
红叶发布了新的文献求助10
7秒前
浮生完成签到 ,获得积分10
8秒前
高高烨磊完成签到,获得积分10
9秒前
10秒前
简单的碧灵完成签到,获得积分10
11秒前
亲豆丁儿发布了新的文献求助10
12秒前
13秒前
小米完成签到,获得积分10
13秒前
科研通AI5应助半柚采纳,获得10
13秒前
14秒前
陶然共忘机完成签到,获得积分10
14秒前
科研小白完成签到 ,获得积分10
15秒前
ttqql发布了新的文献求助10
15秒前
LGLXQ发布了新的文献求助10
18秒前
FashionBoy应助老木虫采纳,获得10
18秒前
小思完成签到,获得积分10
19秒前
鑫鑫完成签到,获得积分10
19秒前
19秒前
19秒前
22秒前
大模型应助橘涂采纳,获得10
23秒前
科研通AI5应助半柚采纳,获得10
23秒前
星河完成签到,获得积分10
23秒前
人参完成签到,获得积分10
24秒前
24秒前
酷波er应助简单的碧灵采纳,获得10
25秒前
麒麟叶发布了新的文献求助30
25秒前
BAI完成签到,获得积分10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737792
求助须知:如何正确求助?哪些是违规求助? 3281460
关于积分的说明 10025330
捐赠科研通 2998147
什么是DOI,文献DOI怎么找? 1645122
邀请新用户注册赠送积分活动 782547
科研通“疑难数据库(出版商)”最低求助积分说明 749835