Statistical inference for high-dimensional convoluted rank regression

统计推断 推论 秩(图论) 统计 数学 回归 回归分析 计量经济学 计算机科学 人工智能 组合数学
作者
Leheng Cai,Xu Guo,Heng Lian,Liping Zhu
标识
DOI:10.1080/01621459.2025.2471054
摘要

High-dimensional penalized rank regression is a powerful tool for modeling high-dimensional data due to its robustness and estimation efficiency. However, the non-smoothness of the rank loss brings great challenges to the computation. To solve this critical issue, high-dimensional convoluted rank regression has been recently proposed, introducing penalized convoluted rank regression estimators. However, these developed estimators cannot be directly used to make inference. In this paper, we investigate the statistical inference problem of high-dimensional convoluted rank regression. The use of U-statistic in convoluted rank loss function presents challenges for the analysis. We begin by establishing estimation error bounds of the penalized convoluted rank regression estimators under weaker conditions on the predictors. Building on this, we further introduce a debiased estimator and provide its Bahadur representation. Subsequently, a high-dimensional Gaussian approximation for the maximum deviation of the debiased estimator is derived, which allows us to construct simultaneous confidence intervals. For implementation, a novel bootstrap procedure is proposed and its theoretical validity is also established. Finally, simulation and real data analysis are conducted to illustrate the merits of our proposed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饿了就次爪爪完成签到 ,获得积分10
刚刚
汉堡包完成签到,获得积分10
2秒前
上官若男应助蔺瑾瑜采纳,获得10
2秒前
wyg117发布了新的文献求助10
2秒前
老西瓜完成签到,获得积分10
4秒前
zhoushaoyun2000完成签到,获得积分10
5秒前
李健应助蓝昕采纳,获得50
8秒前
9秒前
LLL完成签到,获得积分10
10秒前
10秒前
11秒前
Amazing完成签到,获得积分10
12秒前
13秒前
mcnt完成签到,获得积分10
13秒前
一颗橙子完成签到,获得积分10
13秒前
15秒前
yw完成签到,获得积分10
15秒前
无花果应助hugeng采纳,获得10
15秒前
16秒前
Amazing发布了新的文献求助10
16秒前
蔺瑾瑜发布了新的文献求助10
17秒前
完美世界应助华贞采纳,获得10
17秒前
碧蓝乐枫完成签到,获得积分20
17秒前
LIU完成签到,获得积分10
21秒前
莫西莫西完成签到,获得积分10
21秒前
22秒前
orixero应助天真咖啡豆采纳,获得10
23秒前
back you up应助mcnt采纳,获得30
23秒前
24秒前
Xenia完成签到 ,获得积分10
24秒前
科研小民工应助碰壁生灰采纳,获得30
25秒前
26秒前
陈开心完成签到,获得积分10
26秒前
26秒前
蓝昕发布了新的文献求助50
27秒前
科研狗发布了新的文献求助10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
思源应助科研通管家采纳,获得10
29秒前
orixero应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737020
求助须知:如何正确求助?哪些是违规求助? 3280873
关于积分的说明 10021655
捐赠科研通 2997532
什么是DOI,文献DOI怎么找? 1644637
邀请新用户注册赠送积分活动 782098
科研通“疑难数据库(出版商)”最低求助积分说明 749707