Rapid Authentication of Plant-Based Milk Alternatives by Coupling Portable Raman Spectroscopy with Machine Learning

拉曼光谱 人工智能 过度拟合 支持向量机 机器学习 随机森林 计算机科学 样品(材料) 模式识别(心理学) 分析化学(期刊) 材料科学 化学 色谱法 物理 光学 人工神经网络
作者
Hoang Le,Tianqi Li,Jimena G Villareal,Jie Gao,Yaxi Hu
出处
期刊:Journal of AOAC International [Oxford University Press]
标识
DOI:10.1093/jaoacint/qsaf022
摘要

Abstract Background Plant-based milk alternatives (PBMA) are increasingly popular due to rising lactose intolerance and environmental concerns over traditional dairy products. However, limited efforts have been made to develop rapid authentication methods to verify their biological origin. Objective In this study, we developed a rapid, on-site analytical method for the authentication and identification of PBMA made by six different plant species utilizing a portable Raman spectrometer coupled with machine learning. Methods Unprocessed PBMA (i.e., blended raw nut/grain) and processed PBMA that mimic the industrial processing procedures (i.e., filtration and pasteurization) were prepared in lab and subjected to Raman spectral collection without any sample preparation. Three machine learning algorithms [i.e., k-nearest neighbor (KNN), support vector machine (SVM) and random forest (RF)] were tested and compared. Results RF achieved the best performance in recognizing the plant sources for the unprocessed PBMA, with accuracies of 96.88% and 95.83% in the cross-validation and test set prediction, respectively. Due to small sample size and risk of overfitting, classification models for the biological origin of processed PBMA were constructed by combining Raman spectra of the unprocessed and processed samples. Again, RF models achieved the highest accuracy in identifying the species, i.e., 94.27% in cross-validation and 94.44% in prediction. Conclusions These results indicated that the portable Raman spectrometer captured the chemical fingerprints that can effectively identify the plant species of different PBMA. Using this non-destructive Raman spectroscopic based method, the overall analysis from sample to answer was completed within 5 min, providing inspection laboratories a rapid and reliable screening tool to ensure the authenticity of the biological origin of PBMA. Highlights This study presents a novel method for rapid and non-destructive identification of the plant sources of PBMA (both unprocessed and processed) based on the Raman spectroscopic technique and machine learning algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无可无不可完成签到,获得积分10
刚刚
1秒前
hugdoggy完成签到,获得积分10
1秒前
斯人完成签到 ,获得积分10
2秒前
鑫鑫子发布了新的文献求助10
2秒前
忧郁的风华完成签到,获得积分10
2秒前
希望天下0贩的0应助cindy采纳,获得10
2秒前
wangqi发布了新的文献求助10
3秒前
1762120发布了新的文献求助10
4秒前
4秒前
goodnight应助Maestro_S采纳,获得30
4秒前
NexusExplorer应助janie采纳,获得10
5秒前
香蕉觅云应助科研八戒采纳,获得10
5秒前
5秒前
谷谷完成签到,获得积分10
6秒前
华仔应助三六九采纳,获得10
6秒前
6秒前
7秒前
NexusExplorer应助可爱的从寒采纳,获得10
7秒前
8秒前
yyyyy发布了新的文献求助10
8秒前
8秒前
9秒前
记得笑发布了新的文献求助30
9秒前
9秒前
1762120完成签到,获得积分10
10秒前
10秒前
nana发布了新的文献求助10
11秒前
Ayan发布了新的文献求助10
11秒前
lin发布了新的文献求助10
11秒前
12秒前
tsumugi完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
科研通AI5应助H丶化羽采纳,获得10
13秒前
My发布了新的文献求助10
13秒前
wangqi完成签到,获得积分10
13秒前
斑马兽发布了新的文献求助10
13秒前
李健的小迷弟应助LJL采纳,获得10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748398
求助须知:如何正确求助?哪些是违规求助? 3291329
关于积分的说明 10072748
捐赠科研通 3006983
什么是DOI,文献DOI怎么找? 1651482
邀请新用户注册赠送积分活动 786390
科研通“疑难数据库(出版商)”最低求助积分说明 751676