Artificial Intelligence in Orthodontics: Critical Review

口腔正畸科 医学 牙科
作者
Noah F. Nordblom,M. Büttner,Falk Schwendicke
出处
期刊:Journal of Dental Research [SAGE]
卷期号:103 (6): 577-584 被引量:1
标识
DOI:10.1177/00220345241235606
摘要

With increasing digitalization in orthodontics, certain orthodontic manufacturing processes such as the fabrication of indirect bonding trays, aligner production, or wire bending can be automated. However, orthodontic treatment planning and evaluation remains a specialist's task and responsibility. As the prediction of growth in orthodontic patients and response to orthodontic treatment is inherently complex and individual, orthodontists make use of features gathered from longitudinal, multimodal, and standardized orthodontic data sets. Currently, these data sets are used by the orthodontist to make informed, rule-based treatment decisions. In research, artificial intelligence (AI) has been successfully applied to assist orthodontists with the extraction of relevant data from such data sets. Here, AI has been applied for the analysis of clinical imagery, such as automated landmark detection in lateral cephalograms but also for evaluation of intraoral scans or photographic data. Furthermore, AI is applied to help orthodontists with decision support for treatment decisions such as the need for orthognathic surgery or for orthodontic tooth extractions. One major challenge in current AI research in orthodontics is the limited generalizability, as most studies use unicentric data with high risks of bias. Moreover, comparing AI across different studies and tasks is virtually impossible as both outcomes and outcome metrics vary widely, and underlying data sets are not standardized. Notably, only few AI applications in orthodontics have reached full clinical maturity and regulatory approval, and researchers in the field are tasked with tackling real-world evaluation and implementation of AI into the orthodontic workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吾身无拘发布了新的文献求助20
1秒前
小狗发布了新的文献求助10
2秒前
沐飒发布了新的文献求助10
3秒前
年幼时完成签到 ,获得积分10
4秒前
一白发布了新的文献求助10
4秒前
寒冷海云发布了新的文献求助10
5秒前
Mtoc完成签到 ,获得积分10
6秒前
小羊完成签到,获得积分10
6秒前
Aline完成签到,获得积分10
7秒前
我是老大应助太叔笑萍采纳,获得10
8秒前
小鱼应助如意的碧蓉采纳,获得10
8秒前
9秒前
完美世界应助9521采纳,获得10
9秒前
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得30
11秒前
11秒前
李健应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得20
11秒前
脑洞疼应助科研通管家采纳,获得30
11秒前
ding应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得30
12秒前
李健应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
丘比特应助小赞芽采纳,获得10
13秒前
sxt发布了新的文献求助10
13秒前
14秒前
14秒前
科研通AI2S应助科研小花狗采纳,获得10
14秒前
ZHANGHUI发布了新的文献求助10
16秒前
zxvcbnm发布了新的文献求助10
17秒前
18秒前
Yan完成签到,获得积分10
19秒前
局内人完成签到,获得积分10
21秒前
不够萌完成签到,获得积分10
22秒前
一白完成签到,获得积分10
22秒前
23秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135127
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775305
捐赠科研通 2441924
什么是DOI,文献DOI怎么找? 1298299
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600839