拓扑优化
拓扑(电路)
水平集方法
参数统计
集合(抽象数据类型)
基础(线性代数)
径向基函数
功能(生物学)
数学优化
数学
水平集(数据结构)
有限元法
计算机科学
应用数学
几何学
结构工程
工程类
人工智能
组合数学
图像分割
统计
分割
生物
进化生物学
人工神经网络
程序设计语言
作者
Jing Zheng,Shengfeng Zhu,Fazlollah Soleymani
标识
DOI:10.1016/j.compstruc.2024.107364
摘要
To overcome a significant challenge in traditional parameterized level set methods based on globally supported radial basis functions, we propose employing a local differentiation construction of radial basis functions using finite difference, a technique previously applied to solving partial differential equations but novel in the context of topology optimization. We present a novel parameterized level set method for structural topology optimization of compliance minimization and compliant mechanism, with the main aim of reducing computational costs associated with fully dense matrices when approximating systems with a large number of collocation points. The new scheme implemented with rectangular mesh elements and polygonal mesh generation accommodates both rectangular and complex design domains. Numerical results are provided to demonstrate the algorithm's effectiveness.
科研通智能强力驱动
Strongly Powered by AbleSci AI