ANFIS-Driven Machine Learning Automated Platform for Cooling Crystallization Process Development

自适应神经模糊推理系统 过程(计算) 结晶 计算机科学 工艺工程 过程开发 人工智能 材料科学 纳米技术 工程类 化学工程 模糊逻辑 操作系统 模糊控制系统
作者
Cha Yong Jong,Akshay Mittal,Geordi Tristan,Vanessa Noller,Hui Ling Chan,Y. R. Goh,Eunice Wan Qi Yeap,Srinivas Reddy Dubbaka,Harsha Rao Nagesh,Shin Yee Wong
出处
期刊:Organic Process Research & Development [American Chemical Society]
卷期号:28 (4): 1129-1144 被引量:4
标识
DOI:10.1021/acs.oprd.3c00505
摘要

Manual crystallization trials have historically posed significant challenges, demanding substantial expertise for process development and often offering unpredictable outcomes. This study addresses these difficulties by introducing an automated system that alleviates the need for manual iterations and intuitive deductions. The system leverages machine learning algorithms capable of learning from high-quality data to discern patterns and recommend optimal actions for subsequent runs. The automation process commences with a direct chord length (DCL) control system, generating system-specific training data via universal crystallization rules. After that, the automation process will progress into a machine learning iteration loop using adaptive neuro-fuzzy inference system (ANFIS) models. In this iteration loop, multiple models will be built (with accumulative historical data) and deployed to the crystallization process until predefined exit criteria are met or a maximum of five iterative cycles are reached. Results from the two campaigns are presented. It is evident that the automated crystallization platform with machine learning's ability can confidently explore the operational space, proposing credible processing conditions that yield desirable process outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sonny发布了新的文献求助10
刚刚
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
nozero应助科研通管家采纳,获得10
1秒前
wang发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
nozero应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得30
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
nozero应助科研通管家采纳,获得10
2秒前
nozero应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
tao发布了新的文献求助10
3秒前
3秒前
卜星凡完成签到,获得积分10
3秒前
balelalala完成签到,获得积分10
3秒前
4秒前
三岁居居发布了新的文献求助10
4秒前
jrxjzy完成签到,获得积分10
4秒前
anhydrous完成签到,获得积分10
4秒前
科研通AI5应助橙孑采纳,获得10
5秒前
李爱国应助实验顺利采纳,获得10
5秒前
6秒前
安详映阳完成签到 ,获得积分10
7秒前
缓慢中道发布了新的文献求助10
7秒前
颜靖仇完成签到,获得积分10
7秒前
大饼卷肉发布了新的文献求助10
7秒前
1633发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
suntee发布了新的文献求助10
8秒前
星渊完成签到,获得积分10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652722
求助须知:如何正确求助?哪些是违规求助? 3216855
关于积分的说明 9714154
捐赠科研通 2924569
什么是DOI,文献DOI怎么找? 1601790
邀请新用户注册赠送积分活动 754553
科研通“疑难数据库(出版商)”最低求助积分说明 733156