Enhancing the integration of the GPS/INS during GPS outage using LWT-IncRGRU

全球定位系统 精密轻型GPS接收机 辅助全球定位系统 计算机科学 GPS/INS 大地测量学 遥感 实时计算 环境科学 电信 地理 Gps接收机
作者
H. Alaeiyan,M. R. Mosavi,Ahmad Ayatollahi
出处
期刊:Ain Shams Engineering Journal [Elsevier]
卷期号:: 102779-102779
标识
DOI:10.1016/j.asej.2024.102779
摘要

A common technique for navigation and positioning applications is the Global Positioning System (GPS)/Inertial Navigation System (INS) integration, which combines the strengths of GPS and INS to offer accurate and reliable information. However, the performance of the GPS/INS integration deteriorates during a GPS outage, which happens when natural or artificial factors block the GPS signal. The novelty of this paper is improving GPS/INS integration performance during GPS outages using Incremental Regularized Gated Recurrent Unit (IncRGRU) learning and Lifting Wavelet Transform (LWT). Incremental learning is a learning paradigm that can update the model parameters online from streaming data without forgetting the previous ones. Moreover, regularization is a technique that improves the network's generalization and avoids overfitting by adding some constraints or penalties to the model. In this way, the GPS signal is modeled by IncRGRU learning, and the Kalman filter corrects the INS output. Furthermore, LWT removes the noise from the sensors' signals. This algorithm has lower complexity and can work in real-time compared to conventional wavelet transforms. The performance of GPS/INS integration during GPS outages and the accuracy and robustness of GPS/INS integration is significantly improved by using LWT-IncRGRU on real-world datasets. The positioning errors are reduced by an average of 76% during GPS outages, and an average of 69% improves the GPS/INS integration compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
似水流年发布了新的文献求助10
1秒前
聪明月饼完成签到 ,获得积分10
1秒前
chens627发布了新的文献求助10
2秒前
3秒前
李爱国应助快乐的晓刚采纳,获得10
4秒前
所所应助LLLL采纳,获得10
4秒前
发呆完成签到,获得积分20
5秒前
明理的如松完成签到,获得积分10
5秒前
固的曼发布了新的文献求助10
5秒前
慕青应助xiaoxiaoliang采纳,获得30
6秒前
贪玩鸵鸟完成签到,获得积分10
6秒前
光亮友安发布了新的文献求助10
6秒前
7秒前
fairy发布了新的文献求助10
7秒前
化尔为鸟其名为鹏完成签到 ,获得积分10
8秒前
烟雾完成签到,获得积分10
8秒前
111发布了新的文献求助10
8秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
兆兆完成签到,获得积分10
10秒前
大气的莆完成签到,获得积分10
10秒前
小二郎应助呵呵咯咯哒采纳,获得10
10秒前
12秒前
俏皮火完成签到 ,获得积分10
13秒前
yulanghuashan完成签到 ,获得积分10
13秒前
13秒前
英俊的铭应助C洛7采纳,获得10
13秒前
烟花应助暖暖采纳,获得10
14秒前
14秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149519
求助须知:如何正确求助?哪些是违规求助? 2800571
关于积分的说明 7840676
捐赠科研通 2458112
什么是DOI,文献DOI怎么找? 1308279
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706