Influence of ion and hydration atmospheres on RNA structure and dynamics: insights from advanced theoretical and computational methods

核糖核酸 化学物理 分子动力学 核酶 离子 化学 静电 静电学 核酸结构 分子 纳米技术 结晶学 生物物理学 材料科学 计算化学 物理 生物 生物化学 物理化学 基因 有机化学 量子力学
作者
Raju Sarkar,Avijit Mainan,Susmita Roy
出处
期刊:Chemical Communications [The Royal Society of Chemistry]
卷期号:60 (27): 3624-3644
标识
DOI:10.1039/d3cc06105a
摘要

RNA, a highly charged biopolymer composed of negatively charged phosphate groups, defies electrostatic repulsion to adopt well-defined, compact structures. Hence, the presence of positively charged metal ions is crucial not only for RNA's charge neutralization, but they also coherently decorate the ion atmosphere of RNA to stabilize its compact fold. This feature article elucidates various modes of close RNA-ion interactions, with a special emphasis on Mg2+ as an outer-sphere and inner-sphere ion. Through examples, we highlight how inner-sphere chelated Mg2+ stabilizes RNA pseudoknots, while outer-sphere ions can also exert long-range electrostatic interactions, inducing groove narrowing, coaxial helical stacking, and RNA ring formation. In addition to investigating the RNA's ion environment, we note that the RNA's hydration environment is relatively underexplored. Our study delves into its profound interplay with the structural dynamics of RNA, employing state-of-the-art atomistic simulation techniques. Through examples, we illustrate how specific ions and water molecules are associated with RNA functions, leveraging atomistic simulations to identify preferential ion binding and hydration sites. However, understanding their impact(s) on the RNA structure remains challenging due to the involvement of large length and long time scales associated with RNA's dynamic nature. Nevertheless, our contributions and recent advances in coarse-grained simulation techniques offer insights into large-scale structural changes dynamically linked to the RNA ion atmosphere. In this connection, we also review how different cutting-edge computational simulation methods provide a microscopic lens into the influence of ions and hydration on RNA structure and dynamics, elucidating distinct ion atmospheric components and specific hydration layers and their individual and collective impacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单的大白菜真实的钥匙完成签到,获得积分10
刚刚
1秒前
一独白完成签到,获得积分10
2秒前
在水一方应助坚强的樱采纳,获得10
2秒前
慕青应助尼亚吉拉采纳,获得10
3秒前
快乐小白菜应助甜酱采纳,获得10
3秒前
3秒前
qq应助毛慢慢采纳,获得10
4秒前
4秒前
科研通AI5应助吴岳采纳,获得10
4秒前
天天快乐应助ufuon采纳,获得10
5秒前
科研通AI5应助一独白采纳,获得10
6秒前
hearts_j完成签到,获得积分10
6秒前
FashionBoy应助yasan采纳,获得10
6秒前
安琪琪完成签到,获得积分10
7秒前
7秒前
端庄千琴完成签到,获得积分10
7秒前
gaogao完成签到,获得积分10
7秒前
菲菲公主完成签到,获得积分10
8秒前
8秒前
8秒前
英姑应助柒八染采纳,获得10
9秒前
退堂鼓发布了新的文献求助10
9秒前
党弛完成签到,获得积分10
9秒前
9秒前
10秒前
烂漫的松完成签到,获得积分10
10秒前
cheryl完成签到,获得积分10
10秒前
笑笑发布了新的文献求助10
11秒前
12秒前
13秒前
糟糕的霆完成签到 ,获得积分10
13秒前
婷婷发布了新的文献求助10
13秒前
13秒前
Anxinxin发布了新的文献求助10
13秒前
CipherSage应助xyz采纳,获得10
14秒前
14秒前
脑洞疼应助mjj采纳,获得10
14秒前
good关注了科研通微信公众号
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762