雨水管理
水文地质学
水质
雨水
环境科学
计算机科学
工程类
地表径流
生态学
生物
岩土工程
作者
Ndivhuwo Ramovha,Martha Chadyiwa,Freeman Ntuli,Thandiwe Sithole
标识
DOI:10.1007/s11269-024-03841-9
摘要
Abstract Stormwater management modeling tools have been utilized to enhance stormwater operating systems, assess modeling system efficiency, and evaluate the impacts of urban growth on stormwater runoff and water quality. This review explores the potential of stormwater management strategies and Artificial Intelligence modeling tools in enhancing water quality. The study focuses on evaluating stormwater modeling tools for planning and improving stormwater systems, assessing modeling efficiency, and understanding the impacts of new development on stormwater runoff and water quality. Various stormwater modeling tools are compared to aid in water management in urban and rural settings, which is crucial due to increasing storm intensity from climate change. The review debates the advantages and limitations of different modeling tools, particularly in modeling stormwater quantity and quality under different scenarios. It also examines tools used for predicting and analysing stormwater runoff during storm events in diverse locations. The assessment of modeling tools is centred on their support for Green Infrastructure (GI) practices, considering factors like modeling accuracy, data availability, and requirements. The study highlights the importance of these tools in managing water in urban areas and safeguarding water sources during stormwater events. Notably, the accuracy and efficacy of stormwater modeling tools are influenced by input data quality, calibration methods, and standardization metrics, with the widely used Stormwater Management Model (SWMM) being a common modeling tool.
科研通智能强力驱动
Strongly Powered by AbleSci AI