The Potential of Stormwater Management Strategies and Artificial Intelligence Modeling Tools to Improve Water Quality: A Review

雨水管理 水文地质学 水质 雨水 环境科学 计算机科学 工程类 地表径流 生态学 生物 岩土工程
作者
Ndivhuwo Ramovha,Martha Chadyiwa,Freeman Ntuli,Thandiwe Sithole
出处
期刊:Water Resources Management [Springer Nature]
被引量:2
标识
DOI:10.1007/s11269-024-03841-9
摘要

Abstract Stormwater management modeling tools have been utilized to enhance stormwater operating systems, assess modeling system efficiency, and evaluate the impacts of urban growth on stormwater runoff and water quality. This review explores the potential of stormwater management strategies and Artificial Intelligence modeling tools in enhancing water quality. The study focuses on evaluating stormwater modeling tools for planning and improving stormwater systems, assessing modeling efficiency, and understanding the impacts of new development on stormwater runoff and water quality. Various stormwater modeling tools are compared to aid in water management in urban and rural settings, which is crucial due to increasing storm intensity from climate change. The review debates the advantages and limitations of different modeling tools, particularly in modeling stormwater quantity and quality under different scenarios. It also examines tools used for predicting and analysing stormwater runoff during storm events in diverse locations. The assessment of modeling tools is centred on their support for Green Infrastructure (GI) practices, considering factors like modeling accuracy, data availability, and requirements. The study highlights the importance of these tools in managing water in urban areas and safeguarding water sources during stormwater events. Notably, the accuracy and efficacy of stormwater modeling tools are influenced by input data quality, calibration methods, and standardization metrics, with the widely used Stormwater Management Model (SWMM) being a common modeling tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中书完成签到,获得积分10
刚刚
刚刚
zl发布了新的文献求助10
2秒前
3秒前
4秒前
木槿完成签到,获得积分10
4秒前
思源应助满意的夜柳采纳,获得10
6秒前
成以发布了新的文献求助10
6秒前
知意完成签到,获得积分10
7秒前
言苒完成签到,获得积分10
8秒前
9秒前
李昂岚发布了新的文献求助10
9秒前
10秒前
10秒前
温婉的初南完成签到,获得积分10
11秒前
thynkz完成签到,获得积分10
11秒前
12秒前
Q11发布了新的文献求助10
15秒前
17秒前
Kuta发布了新的文献求助20
18秒前
Qiaoclin完成签到,获得积分10
19秒前
Mine完成签到,获得积分10
19秒前
20秒前
duan完成签到 ,获得积分10
20秒前
20秒前
Jasper应助呆萌鱼采纳,获得10
22秒前
22秒前
Owen应助junjie采纳,获得10
22秒前
哈哈哈完成签到 ,获得积分10
23秒前
Iron0731完成签到,获得积分10
23秒前
24秒前
竹子发布了新的文献求助10
25秒前
26秒前
yi发布了新的文献求助10
26秒前
温元冬发布了新的文献求助10
26秒前
26秒前
27秒前
27秒前
29秒前
zara发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157301
求助须知:如何正确求助?哪些是违规求助? 2808735
关于积分的说明 7878261
捐赠科研通 2467077
什么是DOI,文献DOI怎么找? 1313197
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919