Artificial neural network-based multi-input multi-output model for short-term storm surge prediction on the southeast coast of China

台风 风暴潮 人工神经网络 气象学 环境科学 风暴 气候学 计算机科学 机器学习 地理 地质学
作者
Yue Qin,Zilu Wei,Dongdong Chu,Jicai Zhang,Yunfei Du,Zhumei Che
出处
期刊:Ocean Engineering [Elsevier]
卷期号:300: 116915-116915
标识
DOI:10.1016/j.oceaneng.2024.116915
摘要

In recent years, to reduce social and economic losses, timely and accurate storm surge forecasts have been attracting growing attention from coastal engineers. Although a host of studies have demonstrated the feasibility of artificial neural networks (ANNs) in predicting storm surges, few elaborated parametric studies have been performed to investigate the optimal sliding window sizes of input variables of ANN, and the effect of the selection of training data, particularly concerning typhoon intensity and tracks, on model performance remained less understood. This work proposes a multi-input and multi-output (MIMO) neural network to forecast storm surge time series along the southeast coast of China (SCC). More specifically, we explore whether simple ANNs are capable of learning to predict storm surge time series using only historical observations. The ANN models were independently trained with long-term observational data of storm surges and typhoon parameters collected at Xiamen, Dongshan, and Shantou stations from 1950 to 2000. Then the models were employed to forecast storm surges under multiple typhoon scenarios with various lead times. The results suggest that the forecast skills of the present models are affected by the station locations, and the amplitudes and shapes of storm surge time series, excluding typhoon landfall locations. The optimal window sizes for typhoon parameters and previous surge levels (SLs) are different. Previous 1-h or 2-h typhoon information is sufficient, whereas a larger window size of SLs is needed to make more accurate predictions. The optimal values also differ across stations, indicating that a systematic parametric analysis is necessary for the implementation of ANN at a specific station. Furthermore, despite a slight underestimate of peak values and temporal shifts observed in some typhoon cases, the results highlight the accuracy of ANN in short-term forecasting for mild and moderate storm surges, especially those with a cnoidal profile. Our study also demonstrated the importance of the selection of training samples. It is expected that introducing additional extreme typhoon surge scenarios and using a more state-of-the-art model can reduce the generalization errors, particularly in forecasting extreme situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lierikafei发布了新的文献求助10
1秒前
VDC应助mbf采纳,获得30
3秒前
跳跃的白云完成签到 ,获得积分10
4秒前
ChenSSS发布了新的文献求助10
6秒前
7秒前
NexusExplorer应助JiaY采纳,获得10
8秒前
科研通AI2S应助尹文采纳,获得10
8秒前
惑感完成签到 ,获得积分10
10秒前
开心的城完成签到,获得积分10
11秒前
11秒前
Tracy发布了新的文献求助10
16秒前
小强完成签到 ,获得积分10
16秒前
16秒前
19秒前
JiaY发布了新的文献求助10
22秒前
天天快乐应助yuanyuan采纳,获得10
23秒前
ding应助xiaohan采纳,获得10
23秒前
24秒前
xxxwax完成签到,获得积分10
25秒前
26秒前
550发布了新的文献求助10
26秒前
二阶锥太难了完成签到,获得积分20
28秒前
30秒前
30秒前
32秒前
mmmio应助科研通管家采纳,获得10
33秒前
寒来暑往应助科研通管家采纳,获得10
33秒前
小蘑菇应助科研通管家采纳,获得10
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
寒来暑往应助科研通管家采纳,获得10
33秒前
共享精神应助科研通管家采纳,获得10
34秒前
寒来暑往应助科研通管家采纳,获得10
34秒前
小二郎应助科研通管家采纳,获得10
34秒前
wanci应助科研通管家采纳,获得10
34秒前
667发布了新的文献求助10
37秒前
nkuwangkai完成签到,获得积分10
38秒前
22222发布了新的文献求助10
39秒前
科目三应助cc采纳,获得10
39秒前
轻松的纸鹤完成签到,获得积分10
41秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340523
求助须知:如何正确求助?哪些是违规求助? 2968522
关于积分的说明 8633997
捐赠科研通 2648031
什么是DOI,文献DOI怎么找? 1449967
科研通“疑难数据库(出版商)”最低求助积分说明 671609
邀请新用户注册赠送积分活动 660663