亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial neural network-based multi-input multi-output model for short-term storm surge prediction on the southeast coast of China

台风 风暴潮 人工神经网络 气象学 环境科学 风暴 气候学 计算机科学 机器学习 地理 地质学
作者
Yue Qin,Zilu Wei,Dongdong Chu,Jicai Zhang,Yunfei Du,Zhumei Che
出处
期刊:Ocean Engineering [Elsevier]
卷期号:300: 116915-116915
标识
DOI:10.1016/j.oceaneng.2024.116915
摘要

In recent years, to reduce social and economic losses, timely and accurate storm surge forecasts have been attracting growing attention from coastal engineers. Although a host of studies have demonstrated the feasibility of artificial neural networks (ANNs) in predicting storm surges, few elaborated parametric studies have been performed to investigate the optimal sliding window sizes of input variables of ANN, and the effect of the selection of training data, particularly concerning typhoon intensity and tracks, on model performance remained less understood. This work proposes a multi-input and multi-output (MIMO) neural network to forecast storm surge time series along the southeast coast of China (SCC). More specifically, we explore whether simple ANNs are capable of learning to predict storm surge time series using only historical observations. The ANN models were independently trained with long-term observational data of storm surges and typhoon parameters collected at Xiamen, Dongshan, and Shantou stations from 1950 to 2000. Then the models were employed to forecast storm surges under multiple typhoon scenarios with various lead times. The results suggest that the forecast skills of the present models are affected by the station locations, and the amplitudes and shapes of storm surge time series, excluding typhoon landfall locations. The optimal window sizes for typhoon parameters and previous surge levels (SLs) are different. Previous 1-h or 2-h typhoon information is sufficient, whereas a larger window size of SLs is needed to make more accurate predictions. The optimal values also differ across stations, indicating that a systematic parametric analysis is necessary for the implementation of ANN at a specific station. Furthermore, despite a slight underestimate of peak values and temporal shifts observed in some typhoon cases, the results highlight the accuracy of ANN in short-term forecasting for mild and moderate storm surges, especially those with a cnoidal profile. Our study also demonstrated the importance of the selection of training samples. It is expected that introducing additional extreme typhoon surge scenarios and using a more state-of-the-art model can reduce the generalization errors, particularly in forecasting extreme situations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
19秒前
寻道图强应助科研通管家采纳,获得50
25秒前
Jasper应助诉与山风听采纳,获得10
28秒前
Tree_QD完成签到 ,获得积分10
28秒前
CMUSK完成签到,获得积分10
29秒前
1分钟前
yang发布了新的文献求助10
1分钟前
优美香露发布了新的文献求助10
1分钟前
研友_VZG7GZ应助优美香露采纳,获得30
1分钟前
2分钟前
2分钟前
Carol发布了新的文献求助10
2分钟前
2分钟前
2分钟前
优美香露发布了新的文献求助30
2分钟前
善学以致用应助优美香露采纳,获得30
2分钟前
2分钟前
ajing发布了新的文献求助10
2分钟前
2分钟前
3分钟前
zwang688完成签到,获得积分10
3分钟前
OCDer发布了新的文献求助10
3分钟前
3分钟前
yang发布了新的文献求助10
3分钟前
OCDer完成签到,获得积分0
3分钟前
3分钟前
Zima发布了新的文献求助10
4分钟前
Zima完成签到,获得积分10
4分钟前
年轻绮波完成签到,获得积分10
4分钟前
4分钟前
4分钟前
jianglan完成签到,获得积分10
4分钟前
4分钟前
jason完成签到 ,获得积分10
4分钟前
4分钟前
刻苦的小土豆完成签到 ,获得积分10
5分钟前
香蕉觅云应助如意修洁采纳,获得10
5分钟前
雨jia完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657952
求助须知:如何正确求助?哪些是违规求助? 4815338
关于积分的说明 15080712
捐赠科研通 4816255
什么是DOI,文献DOI怎么找? 2577211
邀请新用户注册赠送积分活动 1532242
关于科研通互助平台的介绍 1490814