Unleashing HyDRa: Hybrid Fusion, Depth Consistency and Radar for Unified 3D Perception

水蛇许德拉 融合 雷达 一致性(知识库) 感知 计算机科学 人工智能 电信 心理学 地理 神经科学 考古 哲学 语言学
作者
Philipp Wolters,Johannes Gilg,Torben Teepe,Fabian Herzog,Anouar Laouichi,Martin Hofmann,Gerhard Rigoll
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2403.07746
摘要

Low-cost, vision-centric 3D perception systems for autonomous driving have made significant progress in recent years, narrowing the gap to expensive LiDAR-based methods. The primary challenge in becoming a fully reliable alternative lies in robust depth prediction capabilities, as camera-based systems struggle with long detection ranges and adverse lighting and weather conditions. In this work, we introduce HyDRa, a novel camera-radar fusion architecture for diverse 3D perception tasks. Building upon the principles of dense BEV (Bird's Eye View)-based architectures, HyDRa introduces a hybrid fusion approach to combine the strengths of complementary camera and radar features in two distinct representation spaces. Our Height Association Transformer module leverages radar features already in the perspective view to produce more robust and accurate depth predictions. In the BEV, we refine the initial sparse representation by a Radar-weighted Depth Consistency. HyDRa achieves a new state-of-the-art for camera-radar fusion of 64.2 NDS (+1.8) and 58.4 AMOTA (+1.5) on the public nuScenes dataset. Moreover, our new semantically rich and spatially accurate BEV features can be directly converted into a powerful occupancy representation, beating all previous camera-based methods on the Occ3D benchmark by an impressive 3.7 mIoU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
能干晓博完成签到,获得积分20
刚刚
ty完成签到,获得积分10
刚刚
frantumaglia完成签到,获得积分10
1秒前
1秒前
霸王龙发布了新的文献求助10
1秒前
2秒前
123完成签到,获得积分10
2秒前
科研通AI2S应助泪流不止采纳,获得10
2秒前
共享精神应助zzzzzzz采纳,获得10
3秒前
3秒前
3秒前
完美世界应助笨笨水云采纳,获得10
3秒前
lalala应助WFF采纳,获得10
3秒前
酷波er应助WFF采纳,获得10
3秒前
4秒前
雨诺完成签到,获得积分10
4秒前
Claire发布了新的文献求助10
4秒前
明珠完成签到,获得积分10
4秒前
5秒前
5秒前
guo发布了新的文献求助10
6秒前
娇气的芷巧完成签到 ,获得积分10
6秒前
liuliu发布了新的文献求助10
6秒前
简单的乐荷完成签到,获得积分10
6秒前
于祈完成签到 ,获得积分10
6秒前
6秒前
青城昊发布了新的文献求助10
7秒前
7秒前
三月肖完成签到,获得积分10
7秒前
yyliu发布了新的文献求助10
8秒前
8秒前
Maple完成签到 ,获得积分10
9秒前
darren完成签到,获得积分10
10秒前
guijunmola发布了新的文献求助10
10秒前
温婉的勒发布了新的文献求助10
11秒前
12秒前
破心发布了新的文献求助10
12秒前
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308920
求助须知:如何正确求助?哪些是违规求助? 2942356
关于积分的说明 8508205
捐赠科研通 2617301
什么是DOI,文献DOI怎么找? 1430043
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649215