Reliability-Based Topology Optimization for Optimal Layout of Active Controllers of Structures under Random Excitation

拓扑优化 可靠性(半导体) 拓扑(电路) 计算机科学 激发 可靠性工程 工程类 有限元法 结构工程 物理 电气工程 功率(物理) 量子力学
作者
Wenqian Yu,Cheng Su,Houzuo Guo
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:150 (6)
标识
DOI:10.1061/jenmdt.emeng-7563
摘要

Topology optimization is an appealing technique for optimal layout of active controllers of structures. However, the existing methods are mainly restricted to deterministic excitations, and the optimal control law involved is determined by use of the classical optimal control (COC) method, in which the sensitivities of the gain matrix with respect to the design variables need to be determined by solving the Riccati sensitivity equation numerically. In this study, a reliability-based topology optimization framework is proposed for optimal layout of active controllers of structures under nonstationary random excitations. The optimization problem is formulated as the minimization of the failure probability of the structure subjected to a specified maximum number of controllers. To avoid solving the Riccati equation, an explicit optimal control (EOC) method is first employed to derive the closed-form optimal control law in terms of the position parameters of controllers. The statistical moments of the optimal control forces and structural responses under random excitations are then obtained explicitly by the operation rules of moments, and the first-passage dynamic reliability of the structure can be formulated using the level-crossing theory. On this basis, the sensitivities of the structural failure probability with respect to the position parameters of controllers can be derived analytically by the direct differential method. Finally, the explicit formulations of the response statistics and the relevant sensitivities are incorporated into a gradient-based method of moving asymptotes (MMA) for topology optimization of the layout of controllers in conjunction with the solid isotropic material with penalization (SIMP) technique. Two numerical examples are presented to demonstrate the feasibility of the proposed topology optimization framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LL发布了新的文献求助10
1秒前
1秒前
muyi完成签到,获得积分10
1秒前
辜陈乐完成签到,获得积分10
1秒前
易不毛完成签到,获得积分10
2秒前
hellojwx发布了新的文献求助10
2秒前
Andy完成签到 ,获得积分10
2秒前
随机获取昵称完成签到,获得积分10
2秒前
怕孤单的山河完成签到 ,获得积分10
2秒前
顺心的水之完成签到,获得积分20
3秒前
1+1发布了新的文献求助10
4秒前
liansj发布了新的文献求助10
4秒前
ssy发布了新的文献求助10
4秒前
longjie完成签到,获得积分10
4秒前
4秒前
yangyangyang完成签到,获得积分20
4秒前
ruuuu发布了新的文献求助10
4秒前
我来回收数据完成签到,获得积分10
6秒前
易不毛发布了新的文献求助10
6秒前
lizike完成签到,获得积分10
6秒前
赘婿应助雨纷纷采纳,获得10
7秒前
aero完成签到 ,获得积分10
8秒前
无私语儿完成签到,获得积分20
8秒前
8秒前
Jasper应助科研通管家采纳,获得20
8秒前
852应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
iNk应助科研通管家采纳,获得20
9秒前
田様应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134421
求助须知:如何正确求助?哪些是违规求助? 2785363
关于积分的说明 7771655
捐赠科研通 2440968
什么是DOI,文献DOI怎么找? 1297647
科研通“疑难数据库(出版商)”最低求助积分说明 625023
版权声明 600812