亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of an AI Score Combining Cancer Signs, Masking, and Risk to Select Patients for Supplemental Breast Cancer Screening

医学 乳腺癌 乳腺摄影术 接收机工作特性 癌症 乳房成像 回顾性队列研究 乳腺癌筛查 遮罩(插图) 人口 放射科 内科学 艺术 视觉艺术 环境卫生
作者
Y Liu,Moein Sorkhei,Karin Dembrower,Hossein Azizpour,Fredrik Strand,Kevin Smith
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:2
标识
DOI:10.1148/radiol.232535
摘要

Background Mammographic density measurements are used to identify patients who should undergo supplemental imaging for breast cancer detection, but artificial intelligence (AI) image analysis may be more effective. Purpose To assess whether AISmartDensity—an AI-based score integrating cancer signs, masking, and risk—surpasses measurements of mammographic density in identifying patients for supplemental breast imaging after a negative screening mammogram. Materials and Methods This retrospective study included randomly selected individuals who underwent screening mammography at Karolinska University Hospital between January 2008 and December 2015. The models in AISmartDensity were trained and validated using nonoverlapping data. The ability of AISmartDensity to identify future cancer in patients with a negative screening mammogram was evaluated and compared with that of mammographic density models. Sensitivity and positive predictive value (PPV) were calculated for the top 8% of scores, mimicking the proportion of patients in the Breast Imaging Reporting and Data System "extremely dense" category. Model performance was evaluated using area under the receiver operating characteristic curve (AUC) and was compared using the DeLong test. Results The study population included 65 325 examinations (median patient age, 53 years [IQR, 47–62 years])—64 870 examinations in healthy patients and 455 examinations in patients with breast cancer diagnosed within 3 years of a negative screening mammogram. The AUC for detecting subsequent cancers was 0.72 and 0.61 (P < .001) for AISmartDensity and the best-performing density model (age-adjusted dense area), respectively. For examinations with scores in the top 8%, AISmartDensity identified 152 of 455 (33%) future cancers with a PPV of 2.91%, whereas the best-performing density model (age-adjusted dense area) identified 57 of 455 (13%) future cancers with a PPV of 1.09% (P < .001). AISmartDensity identified 32% (41 of 130) and 34% (111 of 325) of interval and next-round screen-detected cancers, whereas the best-performing density model (dense area) identified 16% (21 of 130) and 9% (30 of 325), respectively. Conclusion AISmartDensity, integrating cancer signs, masking, and risk, outperformed traditional density models in identifying patients for supplemental imaging after a negative screening mammogram. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Kim and Chang in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
烨枫晨曦完成签到,获得积分10
53秒前
1分钟前
1分钟前
2分钟前
HCCha完成签到,获得积分10
2分钟前
2分钟前
yygz0703完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
李健的小迷弟应助天天采纳,获得10
3分钟前
4分钟前
4分钟前
天天发布了新的文献求助10
4分钟前
Owen应助天天采纳,获得10
4分钟前
4分钟前
4分钟前
Hello应助加菲丰丰采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
加菲丰丰发布了新的文献求助10
5分钟前
5分钟前
5分钟前
6分钟前
woxinyouyou完成签到,获得积分0
6分钟前
6分钟前
紫熊完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
zyr完成签到 ,获得积分10
7分钟前
8分钟前
天天发布了新的文献求助10
8分钟前
8分钟前
田様应助天天采纳,获得10
8分钟前
mr_beard完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346939
求助须知:如何正确求助?哪些是违规求助? 2973407
关于积分的说明 8659317
捐赠科研通 2653940
什么是DOI,文献DOI怎么找? 1453381
科研通“疑难数据库(出版商)”最低求助积分说明 672903
邀请新用户注册赠送积分活动 662833